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Abstract

Researchers are driven by the aspiration to develop AI systems that can seamlessly
operate in the real physical world, aiming to enhance human life through automation
and assistance. However, such AI systems encounter an array of challenges. Foremost
among these hurdles is the essential need for physical reasoning capabilities, enabling
the AI to make informed decisions regarding the behaviour of objects under the influ-
ence of physics. Furthermore, the open nature of the real world means that novel and
unforeseen situations frequently arise, necessitating AI to possess adaptive capabilities
in order to thrive in such dynamic environments. In this research, we propose various
techniques to design and generate physics-based content, which serves as an experimen-
tal and evaluative platform to facilitate addressing the above challenges faced by those
AI systems.

Frequently, simulation environments are used by researchers to solve complex real-world
problems as they offer controllable environments for experiments. Our study centres on
Angry Birds, a physics-simulating puzzle game, to present various approaches for design-
ing and generating tasks to facilitate the development of the aforementioned AI systems.
However, generating physics-based content tailored for AI evaluation poses challenges,
demanding physical reasoning and intricate design to meet evaluation requirements.
Regrettably, existing physics-based content generation methods lack the specificity of
producing content for evaluating AI systems in open-world physical environments.

In this thesis, firstly, we propose techniques to design and generate content for evaluating
the physical reasoning capabilities of AI systems. These techniques involve generating
tasks capable of deceiving AI systems in physics-based environments, crafting tailored
tasks to measure the physical reasoning intelligence of agents in comparison with human
intelligence, and developing methods to generate tasks based on the causal physical
interactions between objects in the environment. Secondly, we discuss methods to design
and generate physics-based tasks that incorporate novel situations. These works include
creating testbeds with tasks to measure AI systems’ performance in open-world physics-
based environments and generating tasks with detectable and adaptable novelties for AI
agents, allowing confident evaluation of their capabilities. Through the application of
our research findings, we aim to foster the development of AI systems that can effectively
and efficiently thrive in open-world physics-based environments.
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Chapter 1

Introduction

1.1 Overview

Working in the physical world is a fundamental aspect of human intelligence, which
necessitates reasoning about the behaviours of objects under the in
uence of physics. For
instance, when attempting to stack a set of tableware on a cupboard, an individual may
consider the weight, shape, and balance of each item and anticipate their interactions
when arranged together. Employing their physical reasoning capabilities, they can make
informed decisions on how to arrange the tableware to prevent toppling. Similarly,
when a child builds a sandcastle on the beach, they understand the sand's behaviour,
including concepts like cohesion and stability, to ensure the castle retains its shape. This
signi�cance of physical reasoning extends to a myriad of day-to-day tasks, encompassing
activities as simple as pouring a glass of water to complex activities like driving a car. In
these tasks, we often lack precise knowledge of the objects' speci�c physical properties
or their precise reactions to our actions. Nevertheless, we consistently demonstrate the
ability to execute these actions successfully on each occasion.

Researchers have extensively investigated the developmental trajectory of physical rea-
soning capabilities in humans, demonstrating that these skills emerge from infancy. Stud-
ies have highlighted that shortly after birth, infants already display an awareness of ob-
ject solidity [Valenza et al., 2006]. Throughout their initial year of life, they begin to com-
prehend essential concepts, including object permanence [Baillargeon and DeVos, 1991],
stability [Baillargeon et al., 1992], support [Baillargeon and Hanko-Summers, 1990], and
shape constancy [Day and McKenzie, 1973]. These early cognitive achievements lay the
foundation for the sophisticated physical reasoning capabilities that humans demonstrate
throughout their lives. One prevailing viewpoint among cognitive psychology researchers
is that humans possess forward physics prediction models, which play a vital role in sup-
porting their physical reasoning abilities [McCloskey, 1983]. Consequently, equipped
with these innate physical reasoning capabilities, humans adeptly navigate and operate

1



1 Introduction

in the physical world, a testament to the signi�cance of physics-based intelligence in our
everyday lives.

In addition to the physics-based challenges faced in the real environment, the open-
world nature of reality often introduces novel situations that demand adaptability. For
instance, consider a person driving through an unfamiliar city and encountering a com-
plex intersection with multiple lanes, tra�c lights, and road signs they have never seen.
Despite the novelty of the situation, the driver successfully navigates the intersection
by leveraging their ability to adapt and make decisions based on previous driving ex-
periences and knowledge of tra�c rules. Similarly, consider someone accustomed to
preparing familiar recipes in their well-equipped kitchen. However, when cooking at a
friend's house with unfamiliar appliances and utensils, they con�dently adapt to the
situation. They quickly assess the available tools, determine their functions, and utilize
them for cooking. Throughout the process, they may adjust their cooking techniques
and overcome novel challenges, such as adapting to measure ingredient quantities based
on di�erent measurements. These examples demonstrate how the human species' physi-
cal reasoning and novelty-detecting and adapting capabilities have been crucial for their
successful survival in the ever-changing physical world.

In arti�cial intelligence (AI) research, a longstanding pursuit has been the development of
intelligent agents capable of operating e�ectively in the physical environment to enhance
human lives. While working in the real world seems e�ortless to humans, it presents
formidable challenges for AI systems. For human-like performance, AI agents must pos-
sess essential attributes such as physical reasoning capabilities and adaptability to nov-
elty, which play a crucial role in achieving success in real-world scenarios. While AI has
demonstrated exceptional achievements, surpassing human-level performance in tasks
like Chess [Campbell et al., 2002], Go [Silver et al., 2016], image recognition [Krizhevsky
et al., 2012], and speech recognition [Xiong et al., 2016], it still faces obstacles in mas-
tering physical reasoning tasks. Furthermore, current AI systems exhibit limitations
when confronted with situations that were either not encountered during their training
phase or not anticipated by their developers. Consequently, the incorporation of phys-
ical reasoning capabilities and the ability to detect and adapt to novel situations have
emerged as active and essential research areas in the pursuit of more robust AI agents
in real-world settings.

To enable the development of AI agents equipped with the aforementioned physical rea-
soning capabilities and novelty detection and adaptation skills in physical environments,
it is essential to establish a robust infrastructure. This infrastructure includes evalua-
tion measures to quantify and assess the agents' capabilities, testbeds for agent training,
testing, and comparison, and, at its core, a high-quality set of tasks that con�dently
support the experimentation of AI agents. In this thesis, our primary objective is to in-
troduce methodologies for designing and generating physics-based tasks that e�ectively
aid in the advancement of AI agents functioning in open-world physics-based settings.
These tasks are carefully crafted to meet two crucial requirements: �rst, they demand
physical reasoning capabilities for successful completion, and second, they necessitate
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novelty detection and adaptation capabilities in the context of physical environments.
By leveraging these tasks, we construct evaluation protocols, measures, and testbeds
that facilitate the evolution of AI agents in real physical environments.

In AI research, physics-simulating environments are commonly employed for developing
real-world AI systems due to their numerous advantages over direct experimentation in
the real world. These environments o�er controlled variables, ensuring consistency and
reproducibility of experiments while providing the 
exibility to design scenarios, includ-
ing extreme and rare conditions, that may not frequently occur in reality. The ability
to rapidly iterate and experiment with a wide range of settings e�ciently, coupled with
cost-e�ectiveness and safety, makes physics-simulating environments an invaluable tool
for researchers. Video games, in particular, serve as one such physics-simulating environ-
ment frequently utilized by researchers. By designing tasks in these games that require
sophisticated physical reasoning capabilities to solve, similar to real-world challenges,
researchers can e�ectively assess the physical reasoning performance of AI agents. Fur-
thermore, the ease of introducing novel situations across a wide spectrum within these
game environments adds to their appeal. In this research, we adopt a physics-based game
environment, Angry Birds, due to the aforementioned reasons. This enables the devel-
opment of comprehensive content that contributes to the advancement of AI systems,
which might not have been practically feasible to cover through direct implementation
in the real world.

1.2 Motivation

The motivation behind this thesis is rooted in recognizing the signi�cant challenges that
AI agents face in tasks involving physical reasoning and novelty detection and adaptation
within real-world physical environments. Despite the remarkable progress made in AI
research, current AI systems still struggle to match human-level performance in tasks re-
quiring physical reasoning capabilities. Moreover, when confronted with novel situations,
AI agents often exhibit limited adaptability compared to their human counterparts.

Addressing these shortcomings is of utmost importance for several reasons. Firstly,
achieving human-level physical reasoning capabilities in AI systems is crucial for their
successful deployment in real-world applications. Many real-world tasks demand a deep
understanding of physical interactions, and without adequately addressing this aspect,
AI agents may fall short in critical domains such as robotics, autonomous vehicles,
and environmental monitoring. Secondly, the ability to adapt to novel situations is
a fundamental aspect of human intelligence that we aim to replicate in AI systems.
Humans exhibit remarkable 
exibility in navigating unfamiliar scenarios, leveraging their
ability to generalize knowledge and experience from known situations to new ones. By
empowering AI agents with similar novelty detection and adaptation capabilities, we can
enhance their versatility and overall performance in diverse and dynamic environments.

This thesis aims to address the fundamental challenges of physical reasoning and novelty
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detection and adaptation in AI systems by developing comprehensive content for their
evaluation, developing automatic content generation techniques, and proposing evalua-
tion testbeds. Our objective is to make signi�cant contributions to the advancement of
AI systems, enabling them to navigate and excel in complex, dynamic physical environ-
ments. Through the developed content and rigorous evaluations, we strive to empower
AI agents with enhanced physical reasoning capabilities and the ability to adapt to novel
scenarios, bringing them closer to achieving human-level performance in these crucial
aspects.

1.3 Research Problems

In this thesis, our primary focus is on addressing three fundamental research problems
that revolve around facilitating the advancement of the capabilities of AI agents in
physical reasoning and handling novelties within open-world physics-based environments.

ˆ Can we design tasks in physics-based environments that e�ectively evaluate the
physical reasoning capabilities of AI agents? Additionally, can we develop tech-
niques to generate such tasks automatically?

ˆ Can we introduce open-world properties into these tasks by incorporating nov-
elties that challenge AI agents' ability to detect and adapt to novel situations in
physics-based environments? Moreover, can we devise techniques for the automatic
generation of tasks with novelties?

ˆ Can we utilize these tasks to create comprehensive evaluations and testbeds for
advancing AI systems operating in open-world physics-based environments?

If we can e�ectively address these three research problems and make substantial progress,
we �rmly believe that it will be a signi�cant step towards achieving AI agents with the
above-mentioned capabilities.

1.4 Methodology

In this section, we delve into the methodologies utilized in this study to address the
three research problems outlined earlier.

As previously indicated, our study employs the physics-simulating game Angry Birds
as the experimental framework. In order to address the �rst research problem, our ap-
proach involves an initial exploration within the Angry Birds domain to identify the
speci�c types of game levels that pose challenges for AI agents. Subsequently, we de-
velop methods aimed at generating these challenging game levels. These generation
techniques facilitate the creation of an extensive array of training and testing scenarios
for AI agents. We also take into account the diversity of the generated levels, acknowl-
edging that creating levels that look visually similar or share the same solving strategy
may not provide varied challenges for the agents. Furthermore, these levels are bound
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by the constraints of the physics-based environment, mandating the prevention of object
overlap, the requirement for objects to be arranged in a physically stable con�guration,
and compliance with other constraints dictated by the underlying physics. These consid-
erations collectively ensure the pertinence and suitability of the levels within the context
of the physics-based domain.

Continuing our exploration beyond the challenges faced by Angry Birds agents, we delve
into physical scenarios that human infants naturally grasp from an early age, as well
as those essential for equipping robots with real-world operational capabilities. We
meticulously design tasks tailored to these distinct physical scenarios, subjecting AI
agents to isolated evaluations on each scenario to reveal their inherent strengths and
limitations. Furthermore, we introduce a novel technique aimed at generating physics-
based tasks relevant to these physical scenarios. This technique draws its foundation
from the interconnectedness of causal physical interactions of objects in physics-based
environments. Through this approach, we facilitate a nuanced comprehension of the
intricate physics mechanics pivotal for solving these tasks, thus enabling a comprehensive
evaluation of agents' performance in a granular manner.

In addressing the second research problem, our approach commences by exploring av-
enues for the automatic generation of novelties that can exert pre-de�ned e�ects within
the Angry Birds game levels while ensuring that these novelties remain detectable by
AI agents. Subsequently, we delve into introducing novelties into the aforementioned
physical scenarios. The objective here is to design tasks that necessitate the agents'
comprehension of these novelties and their ability to adapt accordingly to successfully
accomplish the tasks. Through this endeavour, we not only evaluate an agent's capability
to detect and adapt to a novelty across various physical scenarios but also gain insights
into its performance on a physical scenario when confronted with di�erent novelties.
Moreover, extending the framework of the aforementioned physical interaction-based
task generation technique, we explore the automatic generation of tasks augmented with
novelties. This extension is based on disrupting existing physical interactions among ob-
jects while simultaneously constructing new interactions using novelties. By adopting
this extended approach, we gain a deeper understanding of the underlying physics in-
teractions pivotal for solving these tasks with novelties. Such insights are instrumental
in comprehending agents' performance dynamics and subsequently facilitating their en-
hancement and advancement.

When investigating the second research problem, our investigation focuses on novelty
types commonly encountered within physical environments. These novelties encompass
visually detectable changes, such as alterations in colour, shape, or size of objects within
the environment. Additionally, we explore novelties that are not visually apparent but
require interaction to be detected, such as variations in physical parameters like mass,
friction, or bounciness of objects. Furthermore, we emphasize the generation of tasks and
the evaluation of agents on tasks that necessitate adaptive actions in response to novelty.
For instance, in scenarios where an object's friction coe�cient has changed, agents must
adjust the applied force to move the object to its intended destination successfully.
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Addressing the third research question entails harnessing the tasks derived from the
preceding investigations to construct extensive evaluation settings and testbeds. These
evaluation settings are designed with the objective of enabling a comprehensive and con-
�dent assessment of AI agents' competencies in terms of physical reasoning and novelty
detection and adaptation. Moreover, these testbeds serve as a guiding framework for
the continued advancement of these agents. In addition, we augment our evaluation
approach by conducting experiments involving human participants. This human-centric
evaluation serves a dual purpose: it not only establishes baseline performance bench-
marks for human intelligence within the de�ned tasks but also o�ers pivotal insights that
help contextualize the capabilities of AI systems operating within open-world physics-
based environments.

1.5 Thesis Outline

The thesis is structured into nine chapters. The next chapter discusses the background
and related work, and the three chapters after that (Chapters 3, 4, and 5) delve into
the generation of physical reasoning tasks. Subsequently, the following three chapters
(Chapters 6, 7, and 8) build on top of the previous three chapters to integrate novelty
into those physical reasoning tasks. The last section covers the conclusion and outlines
future work. Below, we provide a brief overview of the content of those chapters.

Chapter 2 delves into the foundational aspects and related research within the �elds of
physical reasoning, open-world novelty, and procedural content generation. Within the
physical reasoning domain, we provide an overview of the research area and examine
environments utilized for AI agents' physical reasoning experiments. Additionally, we
introduce our experimental domain, Angry Birds, and provide a brief overview of agents
possessing physical reasoning capabilities, which we use in this study for our experiments.
Transitioning to open-world novelty research, we delve into the concept of novelty for AI
agents and discuss novelty-centric environments designed to foster agent development.
This chapter concludes with a focus on procedural content generation, encompassing a
discussion on di�erent content that is automatically produced in the context of computer
games and physics-simulating environments. The subsequent chapters systematically
describe our thesis's research contributions, each building upon the preceding ones to
progressively realize our research objectives.

The act of mastering Angry Birds game levels inherently demands the utilization of
physical reasoning capabilities. Despite an enduring competition spanning over a decade
aimed at fostering the evolution of AI agents capable of mastering the game, these agents
have so far fallen short of achieving human-level performance. In Chapter 3, we delve
into a facet of this challenge by focusing on game levels strategically designed to deceive
agents into making suboptimal decisions within the physics-based environment. Tradi-
tionally, these levels have been painstakingly crafted by humans due to their demand for
meticulous design. In response, we introduce a procedural methodology that automates
the generation of such deceptive game levels, with the aim of empowering AI agents
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to excel in the face of deception through extensive training and testing datasets. This
chapter's contents have been published in the research paper [Gamage et al., 2021a].

Progressing beyond the realm of deceptive levels within Angry Birds, our inquiry draws
inspiration from the foundation of physical knowledge that humans acquire in their
infancy, coupled with the requisite skills that robots must possess to function seamlessly
within real-world environments. This inspiration guides us to identify a set of essential
physical scenarios that hold signi�cance for AI agents to master when operating within
the real physical world. Translating these scenarios into Angry Birds, we crafted tasks
(i.e., game levels) that e�ectively replicate these real-world situations. Inclusive of these
tasks, we developed a specialized testbed tailored to AI agents, enabling the concurrent
training of multiple agent instances with expedited gameplay. This testbed serves as a
pivotal platform for assessing the local and broad generalization capabilities of AI agents,
particularly when confronted with tasks that demand physical reasoning capabilities.
Mimicking the foundational principles underlying the human Intelligence Quotient (IQ)
assessment, we introduce a novel metric: the Physical Reasoning Quotient (Phy-Q score).
This metric serves as a quanti�able measure of an agent's physical reasoning intelligence,
gauged through its performance across the identi�ed physical scenarios. To contextualize
AI agent performance, we benchmark it against human pro�ciency levels established
within the testbed tasks. This work is presented in Chapter 4 and is based on the work
published in the research paper [Gamage et al., 2023c].

The approach outlined above involves the representation of the physical scenarios as
abstract physical rules, though informative, faces limitations in capturing the intricate
mechanics essential for a comprehensive understanding of the requisite capabilities for
successfully performing in those scenarios. To address this limitation and foster a deeper
understanding of the underlying mechanics, Chapter 5 introduces a grammar-based
methodology that can be used to systematically de�ne physical scenarios by representing
a causal sequence of physical interactions between objects. Subsequently, a methodology
for task generation within physics-simulating environments is proposed, which utilises
these scenarios de�ned as causal sequences as foundational inputs. This approach not
only enriches the understanding of the nuanced mechanics necessary for solving physics-
based tasks but also facilitates a more accurate evaluation of AI systems' pro�ciency in
physical reasoning. This chapter has been adapted from the research published in the
paper [Gamage et al., 2023a].

Subsequently, our focus shifts to the integration of novelties into physics-based tasks.
Initially, we strive to develop methodologies for generating novelties and seamlessly in-
tegrating them into physics-based tasks. This entails automatically generating novelties
that bring about prede�ned e�ects within the tasks, ensuring their detectability by AI
agents. This framework for novelty generation is constructed using Angry Birds. Our
investigation extends to experimental validation, wherein we assess the e�cacy of the
devised methodology in generating novelties capable of producing the intended e�ects.
These novelties serve as tools for the experimentation of AI agents, explicitly facilitating
the re�nement of their novelty-detection capabilities. Chapter 6 of this thesis compre-
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hensively expounds upon this work, and the content included in this chapter is based on
the publication [Gamage et al., 2021b].

Building upon the physical reasoning testbed detailed in Chapter 4, our inquiry extends
to the integration of novelties within the established physical scenarios explored in that
chapter. We delve into the methodology of introducing novelties into physics-based tasks
in a manner that necessitates an agent's comprehension of the novelty and subsequent
adjustment of its actions to accomplish these tasks pro�ciently. We develop a novel
testbed tailored to require agents to engage with physical scenarios augmented by novel-
ties. This testbed serves as a litmus test for agents' capacities to reason through intricate
physical scenarios in the presence of novelties and respond competently. The testbed
o�ers a dual evaluation, enabling the assessment of an agent's performance when con-
fronted with a novelty across various physical scenarios, as well as its performance when
tackling di�erent novelties within the same physical scenario. This testbed is further
enriched by the inclusion of human performance benchmarks, which aspire to elevate
these agents to a level of competency akin to, or surpassing, human capabilities as they
navigate the open-world physical environments. Chapter 7 delves into the comprehen-
sive exploration of this work. The content presented in this chapter is drawn from the
research paper [Gamage et al., 2023b].

Emerging from the exploration conducted in the above chapter, which delves into the in-
tegration of novelties into physical scenarios, we recognize the inherent labour-intensiveness
of manually crafting such tasks. To address this, Chapter 8 takes a step forward by
proposing a method for the automatic generation of such tasks. Building upon the
foundational concepts introduced in Chapter 5, the approach revolves around de�ning
physical scenarios through causal sequences of objects' physical interactions. We expand
that task generation approach to integrate the generation and introduction of novelties
into physical scenarios. This process involves disrupting existing causal interactions
between objects by introducing novelties while simultaneously constructing new interac-
tions. This automated approach not only alleviates the manual burden of task creation
but also o�ers two key advantages: �rst, it ensures agents' pro�ciency in adapting to
novelties can be systematically measured via task performance; second, it grants insight
into the intricate physics mechanics underpinning both novelty adaptation and task so-
lution, thus facilitating a comprehensive evaluation of AI agents. This work, discussed
in Chapter 8, is from the research presented in the paper [Gamage et al., 2024].

In the �nal chapter, we bring together the contributions and discoveries from the re-
search conducted in this thesis. We also suggest possibilities for further exploration in
the future. The individual research sections and their discoveries discussed through-
out this thesis have their own value. Yet, when seen as a whole, they come together
to achieve a larger aim: enhancing intelligent agents that excel in open-world physics-
based environments. Speci�cally, these agents are expected to perform like humans,
skillfully navigating through challenges involving tasks based on physical reasoning and
unexpected situations. We view the contributions made in this thesis as signi�cant steps
toward making this ambitious goal a reality.
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Chapter 2

Background and Related Work

In this chapter, we explore the existing research that underpins the investigations con-
ducted in this thesis. In Section 2.1, we delve into the domain of physical reasoning,
encompassing analysis of prevailing physics-based environments that facilitate the de-
velopment of AI agents pro�cient in physical reasoning. This section also presents a
detailed introduction to our chosen experimental domain, Angry Birds, highlighting its
signi�cance in AI research. Further, we also discuss the AI agents specializing in physical
reasoning, which we use for the experiments in this study. Following this, in Section 2.2,
we shift our focus to the �eld of novelty-centric AI research, encompassing diverse con-
cepts of novelties and the distinct domains tailored to the experimentation of AI agents
on novelties. Finally, in Section 2.3, we explore procedural content generation research,
particularly within the context of video games and other physics-based environments.

2.1 Physical Reasoning

Physical reasoning is the fundamental cognitive ability to comprehend, predict, and
reason about object behaviours and the physical world by applying foundational prin-
ciples of physics [Davis, 2006]. This involves analyzing how objects interact within the
framework of forces, motion, gravity, friction, and other physical laws, allowing individ-
uals to anticipate outcomes of actions in the tangible world. Piaget et al.'s pioneering
work on cognitive development underscores the signi�cance of physical reasoning, par-
ticularly in early childhood, highlighting its pivotal role in human cognition. Infants
grasp concepts like object solidity within days of birth [Valenza et al., 2006], and over
their �rst year, they develop understandings of object permanence [Baillargeon and De-
Vos, 1991], spatiotemporal continuity [Leslie, 1984], stability [Baillargeon et al., 1992],
support [Baillargeon and Hanko-Summers, 1990], causality [Saxe and Carey, 2006], and
shape constancy [Day and McKenzie, 1973]. In activities like stacking items, handling
liquids, catching objects, or driving vehicles, humans employ physical reasoning to fore-
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see object movements, interactions, and responses to external in
uences. This cognitive
skill underpins daily tasks, problem-solving, and decision-making in physical domains.

In the �eld of AI research, cultivating physical reasoning capabilities in AI agents entails
enabling machines to accurately simulate, understand, and predict physical interactions.
These capabilities are crucial for AI systems to navigate the real world, make informed
choices, and execute tasks necessitating a profound grasp of underlying physics. The pur-
suit of robust AI physical reasoning is an ongoing research endeavour with substantial
implications for �elds like robotics, autonomous systems, and human-AI collaboration.
Notably, research by Battaglia et al. [2013] underscores the signi�cance of infusing AI
agents with physical comprehension to enable them to deduce object interactions and
dynamics. E�orts in this domain aim to construct machines capable of achieving phys-
ical reasoning on par with human capabilities [Lake et al., 2017]. By advancing the
understanding of physical reasoning in AI, researchers strive to engender agents capable
of thriving in real-world physical contexts.

2.1.1 Physical Reasoning Environments

In this section, we explore the environments developed for evaluating the physical reason-
ing capabilities of AI agents. Various researchers have created testbeds, benchmarks, and
competitions to support the examination, assessment, and enhancement of AI agents'
physical reasoning capabilities. First, we discuss physics-based visual reasoning envi-
ronments, followed by an exploration of environments employing physics simulators to
simulate object behaviour and motion. This encompasses robotic, game-based, and AI
competition-based environments.

Visual Reasoning Environments

There are video-based benchmarks, including Physion [Bear et al., 2021], IntPhys [Ri-
ochet et al., 2020], CLEVRER [Yi* et al., 2020], and CATER [Girdhar and Ramanan,
2020], and image-based benchmarks such as CoPhy [Wolf, 2020] designed to gauge the
physical reasoning abilities of AI agents through visual content. Figure 2.1 shows exam-
ple tasks from these environments.

The Physion benchmark comprises realistic video examples portraying eight distinct
physical scenarios. These scenarios encompass object collisions, support, containment,
and attachment, as well as projectiles, rolling, and falling motions. Additionally, the
behaviour of soft materials, such as cloth, is represented. Within Physion, agents are
tasked with predicting whether two speci�ed objects will come into contact as a scene
unfolds. IntPhys, assesses an agent's grasp of intuitive physics by evaluating its ability
to discern viable events from impossible ones within videos. This benchmark scrutinizes
three fundamental aspects of intuitive physics: 1) Object permanence, encompassing the
continuous existence of objects over time without abrupt appearances or disappearances;
2) shape constancy, highlighting the capacity of rigid objects to retain their forms over
time; and 3) object trajectories, emphasizing the uninterrupted spatial movement of
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2.1 Physical Reasoning

(a) Example frames from the eight scenarios in Physion.

(b) Example frames from videos in IntPhys.

(c) Example frames from a video in CLEVRER.

(d) Example frames from a video in CATER.

(e) Example images from the three scenarios in CoPhy.

Figure 2.1: Example tasks from the visual reasoning environments Physion [Bear et al.,
2021], IntPhys [Riochet et al., 2020], CLEVRER [Yi* et al., 2020], CATER
[Girdhar and Ramanan, 2020], and CoPhy [Wolf, 2020].
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objects. Moreover, CLEVRER introduces a video dataset containing collision events,
wherein agents are tasked with addressing four types of queries: 1) descriptive questions,
centred on identifying video content; 2) explanatory inquiries, requiring the delineation of
event causes; 3) predictive elements, necessitating forecasts of future occurrences; and 4)
counterfactual scenarios, encouraging contemplation of alternative outcomes. CATER,
is also a video dataset that challenges agents to exhibit spatiotemporal comprehension.
Within this context, three tasks demand attention: detection of all active actions in
the video, identi�cation of active compositional actions, and recognition of the spatial
location of the `snitch' object at a video's conclusion.

CoPhy serves as an image-centric benchmark designed to facilitate the acquisition of
counterfactual knowledge concerning physical dynamics. It encompasses tasks associated
with three distinct physical scenarios: balls rebounding against surfaces, the collision of
objects, and a tower of blocks descending. The agent's objective within this benchmark is
to predict the alternative three-dimensional positions of objects following interventions,
as inferred from images.

Robotic Environments

CausalWorld [Ahmed* et al., 2021] and RLBench [James et al., 2020] represent two no-
table robotic benchmarks in this �eld. CausalWorld capitalizes on a simulated robotic
platform speci�cally designed for causal structure and transfer learning. Within Causal-
World, a collection of eight distinct task types is available, encompassing actions like
pushing, picking, placing, and stacking. The benchmark tasks require an agent to ma-
nipulate blocks within the environment to attain speci�c goal arrangements, starting
from initial block con�gurations. RLBench, on the other hand, o�ers a comprehensive
benchmark tailored for robotic learning, featuring an array of 100 meticulously designed
tasks. These tasks span activities such as reaching designated targets, opening doors,
and placing trays in ovens. RLBench also poses a few-shot learning challenge, with the
intention of enhancing robots' capacity to swiftly assimilate knowledge from previous
tasks to e�ciently learn new ones in unfamiliar settings. Figure 2.2 shows example tasks
from these two environments.

Game-Based Environments

Several game-based benchmarks aligning with the investigations undertaken in this re-
search include PHYRE [Bakhtin et al., 2019], Virtual Tools game [Allen et al., 2020b],
and OGRE [Allen et al., 2020a]. These benchmarks require agents to navigate physics-
simulating game environments, demanding pro�cient physical reasoning capabilities.

The PHYRE benchmark presents an assortment of two-dimensional classical mechanics
puzzles situated in a physical environment. In PHYRE, an agent is tasked with taking a
single action, which involves placing one or more new dynamic bodies into the environ-
ment, with the objective of reaching a pre-de�ned terminal goal state. Its primary aim is
to foster the development of learning algorithms characterized by sample e�ciency and
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2.1 Physical Reasoning

(a) Example tasks from the eight scenarios in CausalWorld. A robot is tasked
with constructing the goal shape depicted in red using the objects avail-
able in the scene, which are shown in blue.

(b) Ten example tasks from RLBench. For instance, in the top left task, the
robot needs to stack a set of six red coloured blocks into a pyramid.

Figure 2.2: Example tasks from the robotic environments CausalWorld [Ahmed* et al.,
2021] and RLBench [James et al., 2020].

e�ective generalization across diverse puzzles. PHYRE encompasses tasks that assess
agents' capacity for two levels of generalization in physical reasoning tasks. These levels
gauge the agents' ability to generalize solutions within a task template (within-template)
and across various task templates (cross-template). Conversely, the Virtual Tools game
serves as a platform to explore priors, representations, and planning and learning al-
gorithms relevant to physical problem-solving. This game engages players in the task
of strategically selecting and placing various objects within a dynamic two-dimensional
physical environment to move a speci�c object into a goal area. With 30 distinct levels,
the game o�ers a testing ground for concepts like launching, blocking, and supporting.
Figure 2.3 displays example tasks from PHYRE and Virtual Tools. Using the tasks
drawn from those two benchmarks, OGRE proposes a framework to evaluate object
generalization in the context of active physical reasoning. OGRE places particular em-
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(a) Three example tasks from PHYRE (left) and one example solution (right). Players place a
new ball within the scene with the objective of achieving the speci�ed goal.

(b) Twenty example tasks from Virtual Tools. Players pick a tool (shown on the right of each
task) and place it in the scene, aiming to move a red object into the green goal area.

Figure 2.3: Example tasks from the game-based environments PHYRE [Bakhtin et al.,
2019] and Virtual Tools [Allen et al., 2020b].

phasis on assessing agents' adeptness in tackling novel physical reasoning tasks, gauged
through two levels of generalization: generalization over reasoning strategies with fa-
miliar objects and generalization across new object types sharing comparable material
properties with those encountered during training.

AI Competition-Based Environments

AI competitions such as Computational Pool [Archibald et al., 2010], Geometry Friends
[Prada et al., 2015], and AIBIRDS [AIBIRDS, 2023] also function as platforms that
demand pro�cient physical reasoning capabilities from participating agents. These com-
petitions are based on games and hence can also be categorized under the above category.
Example tasks from these environments are shown in Figure 2.4.
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(a) The pool table at the beginning of the
Computational Pool competition with
15 object balls and a cue ball.

(b) A game level from AIBIRDS. The
player's task is to destroy the green pig
by launching birds from the slingshot.

(c) A solution for a game level in Geometry Friends. The objective is to collect the purple
Diamond, requiring Rectangle and Circle to execute a cooperative skill-based maneuver in
order to reach the Diamond.

Figure 2.4: Example tasks from the competition-based environments Computational
Pool [Archibald et al., 2010], AIBIRDS [AIBIRDS, 2023], and Geometry
Friends [Prada et al., 2015].

The Computational Pool tournament fosters the creation of AI agents capable of ex-
celling at the game of pool. This competition employs a virtual pool table featuring
eight balls and leverages a physics simulator for its development. This game challenges
AI agents with various intricacies, comprising unbounded state and action spaces, the

uctuating �nesse of execution skills that introduce uncertainties in control, the dynamic
adjustment of turn allocation contingent on state transitions, and the intrinsically ad-
versarial landscape they navigate. On the other hand, Geometry Friends centres around
a physics-based cooperative puzzle-platform game. In this game, agents must formulate
collaborative plans and execute actions within a physics-driven environment incorporat-
ing forces like friction and gravity. The game presents agents with multifaceted chal-
lenges, encompassing coordination across diverse strata, from precise motion control to
synchronized planning, dexterous handling of �ne-grained physics-based actuation, and
e�ective puzzle solving.

Additionally, the AIBIRDS competition promotes the development of AI agents pro-
�cient in solving new levels of the Angry Birds game with the same e�ectiveness and
e�ciency demonstrated by humans. While the act of playing Angry Birds might appear
elementary for humans, the AI agents have not yet reached human-level performance in
this competition, despite its existence for over a decade. This competition is discussed
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in more detail in Section 2.1.2.

All these physical reasoning environments provide varied and challenging situations to as-
sess AI agents' abilities to reason about the physical world. They encompass a spectrum
of factors such as dynamic interactions, intuitive comprehension of physics, causal and
temporal reasoning, spatiotemporal understanding, broad generalization within physical
reasoning tasks, and the capacity for counterfactual reasoning in physical settings. We
will delve deeper into the connections between these physical reasoning environments
and the investigations carried out in this thesis within the respective chapters, providing
a comprehensive comparison and contrast.

2.1.2 Angry Birds

In this thesis, we employ the Angry Birds game as the experimental domain for our in-
vestigations. This section is focused on introducing this particular domain and exploring
the rationale behind our selection of it, as well as highlighting its signi�cance in the �eld
of AI research.

Angry Birds, later known as Angry Birds Classic, emerged as a physics-based puzzle
video game developed by Rovio Entertainment [Rovio, 2023] and initially launched in
2009. The primary objective in Angry Birds involves players employing a slingshot to
launch a designated number of birds, with the aim of destroying pigs present within the
game level. The success of the Angry Birds series is remarkable, with a collective count of
over �ve billion downloads spanning various platforms as of April 2022, including special-
ized editions [Rovio, 2022]. Following its debut, the original game garnered descriptions
such as being among the most prominent games of 2010 [Camp, 2010], a standout hit
in 2010 [Shaer, 2010], and attaining the distinction of being the most signi�cant mobile
app achievement in the world by 2011 [Eriksen and Abdymomunov, 2011].

We have chosen Angry Birds as the experimental domain for this study for several com-
pelling reasons. Foremost, its semi-realistic physics environment enables us to emulate
real-world physical reasoning scenarios, faithfully replicating object behaviours governed
by physics principles. This authenticity extends to our capacity to introduce realistic
physics-based novelties within the game, e�ectively transforming it into an open-world
setting well-suited for our research pursuits. Additionally, Angry Birds holds a promi-
nent position within the realm of AI research, particularly in �elds like physical reasoning
[Zhang and Renz, 2014; Walega et al., 2016], game-playing AI agent development [Renz
et al., 2015, 2019], and procedural content generation [Stephenson et al., 2019; Renz et al.,
2021]. The extensive array of AI agents speci�cally designed for this game [Stephenson
et al., 2018], coupled with the diversity of techniques developed for generating game lev-
els [Stephenson et al., 2019], underscores the rich landscape for exploration. Subsequent
sections of this chapter will delve into these areas in comprehensive detail. Furthermore,
the game's widespread presence within research circles has led to the development of as-
sociated research software and tools [Ferreira and Toledo, 2014b; Xue et al., 2022] that
signi�cantly expedite investigative e�orts. Beyond its research signi�cance, the game's
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Figure 2.5: An example game level in Science Birds.

widespread appeal among the general public, attributed to its engaging gameplay, aids
in recruiting participants for human-based experiments within this study.

For the investigations conducted within this thesis, we utilize a research version of the
game named Science Birds [Ferreira and Toledo, 2014b], developed in Unity and incor-
porating the box2D physics engine [Catto, 2023]. An illustrative example of a game
level within Science Birds is presented in Figure 2.5, accompanied by a depiction of
standard game objects in Science Birds used in this study, in Appendix A. Compara-
ble to its counterpart, Angry Birds, a typical game level in Science Birds encompasses
a variety of elements: birds, blocks, pigs, platforms, TNT explosives, and a slingshot.
Of these, birds, blocks, and pigs are dynamic objects governed by Newtonian physics
principles, while platforms remain static due to their imperviousness to external forces.
TNTs exhibit an explosive response upon impact by other objects, causing damage to
surrounding dynamic elements. The slingshot serves as the means to shoot the birds.
Dynamic objects feature health points that diminish upon collisions and explosions;
when reaching zero health, the object is eliminated. The blocks are fashioned from three
distinct materials: ice, wood, and stone. Material composition in
uences the block's
health and mass, with ice blocks being the least sturdy and heaviest, followed by wood
and then stone. The game features �ve bird types, with four of them endowed with
distinctive powers, excluding the standard red bird. The deployment of these powers
occurs through screen-tapping during 
ight: the blue bird divides into three, the yellow
bird accelerates, the black bird detonates, and the white bird lays an explosive egg.

In the context of AI agents playing Angry Birds, agents possess a limited set of actions at
their disposal. These actions encompass the speci�cation of the bird's release coordinates
(x, y), thereby determining the trajectory by drawing the bird backward within the
slingshot. Subsequently, agents are required to tap the screen at time t after the release
to activate the bird's unique power, if available. Given the continuous nature of the
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action space, agents are confronted with an in�nite array of potential actions denoted as
(x, y, t). When multiple birds are present within a game level, agents must adhere to a
sequential order, launching the birds one after the other. Also, the agent is a�orded the
privilege of observing the aftermath of each preceding launch prior to the subsequent
launch. Upon e�ectively eliminating all pigs within a given level utilizing the provided
birds, the agent achieves level completion and accrues points based on factors such as
the remaining number of birds and the extent of destruction incurred upon game-level
objects. Conversely, if the agent is unable to eradicate all pigs following the utilization
of all available birds, the level is regarded as unsuccessful.

In contrast to the intricate and unstructured nature of the real physical world, Angry
Birds serves as a simpli�ed and regulated platform. Nevertheless, despite its controlled
setting, no AI system has thus far emerged that can rival human performance within this
domain. To catalyze the advancement of AI agents endowed with human-like physics
reasoning capacities, the AIBIRDS competition [AIBIRDS, 2023] has been a recurring
event since 2012, primarily hosted at the International Joint Conference on Arti�cial
Intelligence (IJCAI). Over the years, a plethora of AI methodologies have been pro-
posed, spanning from contemporary deep reinforcement learning techniques to more
traditional heuristic approaches such as qualitative physical reasoning methods. Despite
this diversity, none of these strategies has achieved the notable benchmark of attaining
human-level performance. Plausibly, one contributing factor to this outcome is the ab-
sence of intricate levels and associated testbeds tailored to hone and evaluate agents'
physical reasoning capacities, thereby restraining their potential advancement.

2.1.3 Physical Reasoning Agents

This section provides a brief overview of AI agents from existing literature that exhibit
physical reasoning capabilities and are utilized in the explorations within this thesis.
Speci�cally, our focus is on agents operating within action-oriented physical environ-
ments. These environments necessitate agent actions to accomplish tasks within physics-
based settings, distinct from tasks such as visual question answering. Our discussion
centres around deep reinforcement learning agents, encompassing the Deep Q-network
(DQN) agent, Relation DQN, Policy learners, and four heuristic agents specializing in
playing the Angry Birds game. The four heuristic agents are participants of the AIBIRDS
competition, namely Datalab, Bambirds, Eagle's Wings, and Pig Shooter. Detailed elab-
orations on the speci�cs of the learning agents are provided in the respective chapters
where they are utilized for our experiments.

ˆ DQN agent : The deep Q-network agent [Mnih et al., 2015] operates by gather-
ing quadruplets of state, action, reward, and next state during its training phase,
employing a decaying epsilon-greedy strategy. This approach has proven e�ective
in the assessment of action-centric physical reasoning environments like PHYRE
and OGRE. Notably, DQN has showcased the best performance in PHYRE and
in within-dataset evaluations in OGRE while remaining moderate in cross-dataset
evaluations in OGRE. Variants of this agent have emerged, including the Double
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Dueling DQN [Wang et al., 2016; Van Hasselt et al., 2016], and adaptations involv-
ing distinct input types such as images and symbolic representations. Additionally,
both online learning and o�ine versions of the DQN agent have been developed,
contributing to its versatility and adaptability across di�erent scenarios.

ˆ Relational DQN agent : The Relational DQN agent extends the DQN agent by
integrating a relational module [Zambaldi et al., 2018]. Its design focuses on im-
proving generalization across various scenarios through structured perception and
relational reasoning. This agent is primarily designed to recognize and grasp sig-
ni�cant relationships among objects in di�erent templates or events. This method
allows the agent to learn and internalize these relationships, facilitating its ability
to apply this knowledge in di�erent situations.

ˆ Policy learner agents : Policy learners encompass agents that specialize in learn-
ing optimal decision-making strategies directly through policy-based reinforcement
learning approaches. These approaches involve training a policy, a mapping from
states to actions, to maximize cumulative rewards over time. Among these, the
A2C [Mnih et al., 2016] and PPO [Schulman et al., 2017] agents stand out as no-
table examples of policy learners. Our experimentation involved these agents in
scenarios with both discrete and continuous action spaces. However, in alignment
with observations made in PHYRE, it became evident that policy-gradient meth-
ods encountered limitations when compared to DQN, struggling to achieve optimal
policy convergence within a reasonable duration.

ˆ Datalab: Datalab [Borovi�cka et al., 2014] is an Angry Birds playing agent that
employs a set of four pre-de�ned strategies for planning one move at a time. These
strategies involve tactics like destroying structures, eliminating as many pigs as
possible, displacing round blocks to cause damage, and destroying explosives. Each
strategy aims to maximize damage, with the choice determined by the environment,
potential trajectories, current bird type, and remaining birds. Datalab secured
victory in the 2014 and 2015 AIBIRDS competitions.

ˆ Bambirds: Bambirds [Felix Haase, 2021], as an Angry Birds playing agent, oper-
ates by generating a qualitative level representation and subsequently selecting a
strategy from nine distinct strategies based on the current state of the level. These
strategies encompass tactics such as initiating a domino e�ect, targeting load-
bearing blocks, maximizing structure penetration, prioritizing protective blocks,
focusing on pig targets, and leveraging speci�c bird powers. Each strategy is as-
signed a score re
ecting its anticipated damage potential for the current bird type.
Random selection of a strategy ensues, with the associated score determining the
likelihood of its choice. Notably, this agent retains a memory of prior shots and
strategies, which aids in its approach to level retrying. Bambirds clinched victory
in both the 2016 and 2019 AIBIRDS competitions.

ˆ Eagle's Wing: Eagle's Wing [Wang, 2017], is also an Angry Birds playing agent
that employs a set of �ve distinct strategies. These strategies encompass actions
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Figure 2.6: Example novelties that can be encountered in the real world. On the left:
The emergence of self-checkout machines in supermarkets post-early 2000s
represented a novel experience for customers accustomed to traditional check-
out methods. On the right: tra�c accidents, relatively uncommon in train-
ing data, presenting novel scenarios to self-driving cars due to their infre-
quency and unique visual characteristics in each occurrence. Image credits:
[Wikipedia contributors, 2023d,a].

such as targeting pigs, activating explosives, achieving maximum block destruc-
tion, aiming at high-round objects to induce their fall and subsequent damage,
and directing shots at bottom building blocks to disrupt structures and undermine
stability. Strategy selection relies on assessing the anticipated utility of each ap-
proach in conjunction with the currently chosen bird. This agent secured victory
in both the 2017 and 2018 AIBIRDS competitions.

ˆ Pig Shooter: The Pig Shooter (also referred to as the Naive Agent) [Stephenson
et al., 2018], introduced in the AIBIRDS competition, serves as a foundational
agent. It integrates a computer vision module for object recognition and a tra-
jectory planning module that computes two feasible bird release points to hit a
reachable target. Notably, the Pig Shooter consistently launches the current bird
at a randomly selected pig via an arbitrarily selected trajectory without taking
other factors into account.

2.2 Open-World Novelty

In our everyday lives, we frequently encounter scenarios like unforeseen road closures
due to constructions or accidents, demanding rapid adjustments to our routes; sudden
changes in weather, such as unexpected rainstorms, prompting modi�cations to plans like
carrying an umbrella or altering outdoor activities; or natural disasters like earthquakes
that call for evacuations and adaptation to new living conditions. Real-world examples
of such novelties are depicted in Figure 2.6. Human beings exhibit adeptness in adapting
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to such circumstances. To function e�ectively in the real world, in addition to possessing
physical reasoning abilities, the capacity to adapt to novel situations is crucial. As the
use of AI systems in open-world environments, like the real world, continues to expand,
researchers are working towards incorporating these adaptive capabilities into AI agents
as well.

Within the AI context, the term `open world' pertains to an environment in which
an AI system confronts and engages with situations that may not have been explicitly
covered during its training phase. Di�ering from a `closed world' scenario, where an AI
system functions within a con�ned and predetermined scope, an open-world AI system is
anticipated to navigate novel and unexpected situations by extrapolating its knowledge
and adjusting its actions based on available information. This places a demand on the
AI system to demonstrate resilience, adaptability, and the competence to make well-
informed decisions even amidst unfamiliar and ever-changing conditions. Open-world
learning (OWL) is a contemporary �eld of study focused on creating such AI systems
that can autonomously respond to unexpected alterations in their surroundings [Langley,
2020]. OWL researchers aim to empower agents capable of both detecting novelties in
the environment and e�ectively adapting to those novelties.

It is noteworthy that several research domains exhibit similarities with the principles
underlying OWL. For instance, incremental learning [Ade and Deshmukh, 2013] involves
updating the learning process as new examples are introduced, thereby re�ning the
acquired knowledge. Another related area is learning under concept drift [Lu et al.,
2018], which entails developing methodologies to detect, comprehend, and adapt to
unforeseen alterations in the distribution of streaming data over time. Furthermore,
few-shot learning [Lu et al., 2018] focuses on swiftly generalizing to novel tasks with
limited supervised information, while zero-shot learning deals with scenarios where the
classes represented by training instances are disjoint from the classes the agent aims
to classify. Additionally, transfer learning [Pan and Yang, 2010] endeavours to transfer
knowledge from one domain to another, particularly when training data is available only
in one domain, while the task pertains to another domain of interest.

Further insight into OWL emerges from cognitive science, which underscores the signif-
icance of common sense reasoning. This involves an intuitive understanding of physics,
everyday world knowledge, and an inherent grasp of cause-and-e�ect relationships [Sten-
ning and Van Lambalgen, 2012]. Humans adeptly integrate these facets to comprehend
their surroundings, predict outcomes, and adapt to new situations. In contrast, AI
systems often lack comprehensive common-sense reasoning, hindering their ability to
navigate complex environments e�ectively [Marcus, 2020]. Machine common sense re-
search endeavours to narrow this disparity by equipping AI with foundational knowledge
about the world, akin to human intuition. Drawing from psychology and cognitive sci-
ence, researchers strive to imbue AI models with robust common-sense reasoning abilities
[Davis, 2023]. Integrating physics-based reasoning is a pivotal component of this �eld
[Ye et al., 2018; Agrawal et al., 2016; Mottaghi et al., 2016].
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In the rest of this section, we explore the concept of novelty in the �eld of OWL research
and also investigate the environments that have been created to enable the experimen-
tation of AI agents' abilities to detect and adapt to novel situations.

2.2.1 Concept of Novelty

In various AI studies, researchers have explored diverse approaches to formally con-
ceptualize the concept of novelty. Certain scholars have referred to novel scenarios as
anomalies or instances of out-of-distribution data [Boult et al., 2021; Feeney et al., 2022].
Other researchers de�ne novelty in terms of situations that deviate from either implicit
or explicit assumptions within an agent's model of the external world, which encom-
passes both other agents, the environment, and their interactions [Doctor et al., 2022;
Kejriwal and Thomas, 2021]. An alternative perspective is o�ered by Langley [2020],
who characterizes novelty as transformations applied to the elements existing within the
environment. These transformations encompass various forms, such as spatio-temporal,
structural, process-oriented, and constraint-based transformations. In further support
of this conceptualization, Molineaux and Dannenhauer [2022] formally establish a range
of environmental transformations. Conversely, Boult et al. [2021] have introduced a
comprehensive framework that uni�es the notion of novelty within the domain of AI.
Their approach revolves around the world space, observation space, and the agent's
state to rigorously de�ne various categories of novelties. In contrast to other research
domains, such as incremental learning and learning under concept drift, as discussed in
the preceding section, the novelties examined in our study encompass open-world ele-
ments characterized by structural and parametric alterations. In this context, agents
must actively detect and swiftly adapt to sudden changes to e�ectively operate in the
environment.

The Defense Advanced Research Projects Agency (DARPA) has initiated the Science
of Arti�cial Intelligence and Learning for Open-world Novelty (SAIL-ON) program with
the aim of investigating and developing the fundamental scienti�c principles, general
engineering methodologies, and algorithms necessary for the creation of adaptive AI sys-
tems that respond e�ectively to novel situations [Russell, 2019; SAIL ON BBA, 2019]. As
part of the SAIL-ON program, a working group known as the novelty working group (for
a list of participants, refer to [Doctor et al., 2022]) has devised a novelty hierarchy. This
hierarchy o�ers a framework for categorizing di�erent types of novelties based on their
characteristics. This categorization proves invaluable for robust novelty assessment, en-
abling the design of novelties that span a broad spectrum and aiding in the identi�cation
of distinct novelty categories where an agent model might falter. In this thesis, during
the investigations pertaining to open-world novelties, we employ this novelty hierarchy
as a guiding framework. The hierarchy encompasses levels such as objects, agents, ac-
tions, relations, interactions, environments, goals, and events. Each level's de�nition,
as provided in [Doctor et al., 2022], is outlined below alongside an example involving a
self-driving car.

1. Objects: New classes, attributes, or representations of non-volitional entities
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ˆ Encountering an unfamiliar road sign or a recently installed tra�c signal that
the self-driving car has not previously encountered.

2. Agents: New classes, attributes, or representations of volitional entities

ˆ Engaging with an autonomous drone that monitors tra�c conditions and
communicates information to the self-driving car's navigation system.

3. Actions: New classes, attributes, or representations of external agent behaviour

ˆ Observing a pedestrian using a unique hand signal to indicate intent to cross
the road, necessitating the self-driving car to recognize and respond.

4. Interactions: New classes, attributes, or representations of dynamic properties of
behaviours impacting multiple entities

ˆ Navigating through a construction zone with workers directing tra�c using
hand signals, demanding the self-driving car's understanding and appropriate
response.

5. Relations: New classes, attributes, or representations of static properties of the
relationships between multiple entities

ˆ Navigating a right-hand tra�c area when the car is trained for left-hand side
tra�c.

6. Environments: New classes, attributes, or representations of elements independent
of speci�c entities

ˆ Driving through a region with unfamiliar 
ora and fauna potentially a�ecting
the self-driving car's sensors and decision-making.

7. Goals: New classes, attributes, or representations of external agent objectives

ˆ Interpreting the sudden acceleration of a nearby vehicle as a signal for a lane
change, necessitating the self-driving car to adjust its trajectory accordingly.

8. Events: New classes, attributes, or representations of series of state changes

ˆ Unexpected road closures due to a local event or parade, prompting the self-
driving car to reroute and adapt to changing tra�c conditions.

2.2.2 Novelty Centric Environments

With the aim of advancing agents capable of functioning in open-world settings, re-
searchers have created di�erent environments for experimenting with and evaluating
open-world AI systems. These environments revolve around introducing novelties into
the tasks the agents have to perform, allowing for the assessment of agents' abilities to
detect and adapt to such novelties.
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(a) A diagrammatic representation of the NovelGridworlds domain with three
example novelties. The default setting features the agent facing a crafting
table and a surrounding wall encompassing the grid world arena.

(b) Example content from the NovelCraft dataset. The �rst row
displays a standard episode, while the following two rows depict
two novel episodes. In these episodes, novel objects are high-
lighted in orange when they are visible.

Figure 2.7: Example novelties from the novelty-centric environments NovelGridworlds
[Goel et al., 2021] and NovelCraft [Feeney et al., 2022].

GNOME [Kejriwal and Thomas, 2021] is a simulation platform designed to enhance the
development and evaluation of AI systems within complex multi-agent scenarios like
strategic board games. Speci�cally, GNOME serves as a valuable resource for crafting,
training, and assessing AI agents specialized in playing the classic strategic board game,
Monopoly. The simulator introduces novelties across three distinct categories. First, it
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enables the inclusion of class novelties, involving the introduction of new object types
previously unseen in the game. For instance, a new card might be introduced that, when
drawn, entails a substantial fee for each owned house and hotel. Second, attribute nov-
elties are achievable, which entail altering the attributes of existing game elements. For
example, adjustments could be made to the rent values of properties. Third, representa-
tion novelties are possible, leading to changes in the visual or structural representation
of the game. An instance could be shu�ing the order of slots on the board.

The NovGrid toolkit [Balloch et al., 2022] has been crafted to introduce novelty into
the MiniGrid environment [Chevalier-Boisvert et al., 2018], thus enhancing its capabil-
ities for novelty generation. This augmentation involves expanding the functionalities
of existing elements within the MiniGrid environment, empowering agents to both de-
tect and adapt to novel scenarios. Notably, the MiniGrid environment is designed as a
grid-world platform that simpli�es the integration of reinforcement learning algorithms
into the environment, thereby promoting e�cient iteration and testing of algorithms.
NovGrid further extends this environment by enabling a more intricate interaction be-
tween the grid world and the agent, facilitating the seamless injection of novelties into
the environment. The primary purpose behind the development of the NovGrid toolkit
is to expedite the creation and assessment of reinforcement learning techniques that are
equipped to adapt to novelties. The toolkit o�ers a collection of 11 example novelties.
These examples include modi�cations such as relocating the goal object, altering the
assumed locked or unlocked state of a door, adjusting the requisite number of keys for
unlocking a door, and more.

The NovelGridworlds benchmark [Goel et al., 2021] has also been created as a tool to
evaluate novelty detection and adaptation within a grid-based environment. Leveraging
an OpenAI Gym environment [Brockman et al., 2016], this benchmark o�ers a versatile
platform for algorithm prototyping in both planning and machine learning contexts. The
framework encompasses a set of 12 distinct novel scenarios, e�ectively spanning three
categories of novelties: objects, attributes, and actions. Under the objects category,
novel elements are introduced into the environment, such as a new fence that restricts
the agent's access to certain objects. Meanwhile, within the attributes category, modi-
�cations are made to the properties of existing items in the environment. For instance,
the number of items the agent gains upon breaking an object might increase. Lastly,
the actions category involves adjustments to the action space of the environment. As an
example, a new action like `jump' could be introduced to the agent's available actions.
This environment and sample novelties are shown in Figure 2.7a.

NovelCraft [Feeney et al., 2022] serves as a benchmark dataset speci�cally designed for
the purposes of novelty detection and discovery. This dataset operates within a modi�ed
version of the Minecraft game [Mojang Studios, 2023b], known as PolyCraft POGO [Goss
et al., 2023]. PolyCraft POGO introduces a 3D environment where the agent's objective
revolves around orchestrating a sequence of actions to transform available resources into
a pogo stick. The NovelCraft dataset encompasses a collection of pre-rendered images
and symbolic world-states, which o�er insights into the perspective of an agent engaged
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in the assembly task of creating a pogo stick. Examples of some novelties in NovelCraft
include the introduction of new fences that obstruct access to trees and the introduction
of novel tree species characterized by distinct bark properties, which in turn facilitates
more e�cient harvesting. These modi�cations are visually identi�able, enhancing the
dataset's utility for evaluating the detection and discovery of novelties. Figure 2.7b
displays representative images from the NovelCraft dataset.

The Smart Home GAN (SHGAN) system, introduced by Briscoe et al. [2022], is a
tool aimed at producing smart home data with a particular emphasis on facilitating
novelty detection. This system models the intricate dynamics inherent in a smart home
environment. Through this modelling, SHGAN is capable of generating a multitude
of lifelike sensor readings, which can be harnessed as an experimental platform for AI
systems. The authors adopt a conditional Wasserstein Generative Adversarial Network
(GAN) approach for the data generation process. Notably, this approach incorporates
various essential factors, including the temporal sequence of sensor readings, human
behaviours within the home, and the inclusion of corresponding activity labels. To
validate their methodology, the authors draw upon data originating from real-world
smart home contexts.

The Cartpole with novelty domain, as presented in [Holder, 2023], serves as a physics-
based platform that places a signi�cant emphasis on novelty. This domain is founded
upon the well-known CartPole problem, also referred to as the inverted pendulum sce-
nario [Wikipedia contributors, 2023b]. The core objective here revolves around the
agent's task of maintaining the balance of a pole by strategically moving the associated
cart in various directions: forwards, backwards, left, or right. The environment encom-
passes additional objects that exhibit movement and hold the potential for collisions
with the cart, pole, walls, or one another. Within this setting, a range of novelties is
embedded. These novelties encompass variations such as alterations in the cart's mass,
shifts in gravity that impact both the cart and the pole, as well as modi�cations to the
dimensions of the objects within the environment.

Lastly, the Science Birds Novelty framework [Xue et al., 2022] stands as another note-
worthy inclusion in the �eld. Built upon the foundation of the previously discussed
Angry Birds clone, Science Birds [Ferreira and Toledo, 2014b], this framework takes a
central role in our novelty-based explorations within this thesis. It e�ectively integrates
novelties into the game levels of Science Birds and serves as the essential infrastructure
for conducting experiments involving AI agents. It is noteworthy to highlight that the
previously discussed AIBIRDS [AIBIRDS, 2023] competition has established a dedicated
Novelty Track [AIBIRDS Novelty Track, 2023] that operates through this very frame-
work. This competition track, which has been active since 2021, serves as a catalyst for
advancing the development of AI agents capable of operating as pro�ciently as humans
in open-world physics-based settings. The 2022 iteration of the Novelty Track [AIBIRDS
Novelty Track 2022, 2022] presented ten distinct novelties, each falling into �ve distinct
novelty categories:
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ˆ Class: Unseen objects or entities - 1) a new egg-shaped object sharing the colour
of a pig, 2) a new object behaving like a pig that must be eliminated for victory.

ˆ Attribute: Alterations in object features - 1) increasing the bounciness of the red
bird, 2) elevating the slingshot's placement.

ˆ Representations: Modi�cations in object representations - 1) objects encircling
pigs adopting the same colour as pigs, 2) transforming object shapes into circles
instead of their true forms.

ˆ Static Relations: Changes in static relationships - 1) relocating the slingshot to the
right, 2) allowing wooden blocks to 
oat above ice blocks, causing wooden blocks
to plummet when ice blocks are destroyed.

ˆ Dynamic Interactions: Changes in dynamic interactions - 1) birds gliding through
pigs without eliminating them, necessitating alternative methods to neutralize pigs,
2) enabling birds to slide along stone blocks due to reduced friction.

2.3 Procedural Content Generation

Procedural content generation (PCG) entails the algorithmic creation of content within
virtual environments, particularly in the context of games. The scope of such content
encompasses a wide array of elements, including game objects like characters and build-
ings, maps, road networks, music, puzzles, stories, game levels, and even complete games
themselves. The ultimate aspiration in developing PCG algorithms often revolves around
achieving content that rivals or surpasses human-designed creations in terms of quality
and authenticity.

PCG has gained popularity among researchers and within the game industry for various
reasons. One notable advantage is its ability to reduce the heavy reliance on human de-
signers and artists, whose involvement can be time-consuming and expensive. As game
development becomes more complex, requiring substantial human e�ort, the potential
to simplify this process through algorithmic generation becomes evident. Initially, PCG
was valued for enabling game creation within memory limitations, but it also extends
its utility by o�ering a broader array of content than manual creation allows. Intelli-
gent design tools with PCG capabilities could enhance the creativity of human creators,
aiding small teams and enthusiasts in developing content-rich games without getting
bogged down in details. Many PCG algorithms can swiftly produce new content that
supports ongoing gameplay, ensuring a constant stream of new levels, characters, and
areas, thereby fostering novel gaming experiences. Additionally, PCG's integration with
player modelling holds the promise of player-adaptive games, enhancing player satisfac-
tion, learning outcomes, and engagement.

Furthermore, PCG also contributes signi�cantly to advancing AI research by providing a
valuable content source for the development of learning algorithms. One challenge in AI
research is the scarcity of datasets, a common issue. Gathering substantial amounts of
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varied and pertinent data can be time-consuming and resource-intensive across di�erent
�elds. Here, PCG o�ers a scalable and e�cient method to generate ample training
data, ensuring that learning algorithms have access to numerous examples to re�ne their
capabilities. In the domain of AI, the quality and diversity of training data play crucial
roles in in
uencing the performance and adaptability of learning algorithms. PCG o�ers
an innovative approach to creating diverse datasets that can expose AI systems to a
wide array of contexts and challenges.

2.3.1 Procedurally Generated Content and Techniques

PCG has been harnessed across a diverse spectrum of games to generate varied content
utilizing various techniques. Hendrikx et al. [2013] present a classi�cation of PCG-
generated content, encompassing game bits, game space, game systems, game scenarios,
game design, and derived content, while also outlining a taxonomy of common content
generation methods, including pseudo-random number generators, generative grammars,
image �ltering, spatial algorithms, modelling and simulation of complex systems, and
arti�cial intelligence. Additionally, Togelius et al. [2011] categorizes PCG approaches
into three categories: constructive, generate and test, and search-based.

The application spectrum of PCG extends to generating diverse elements within games.
PCG has been harnessed for producing vegetation [Deussen et al., 1998; Dapper, 2023],
terrains [Smelik et al., 2009; Olsen, 2004], caves [Lee et al., 2017], dungeons [Baldwin
et al., 2017], road networks [Banf et al., 2010; Kelly and McCabe, 2007; Parish and
M•uller, 2001], buildings [M•uller et al., 2006; Mirahmadi and Shami, 2012], creatures
[Hudson, 2013], simulated motions [Karim et al., 2013; Horswill, 2009], non-player char-
acter interactions [Strong and Mateas, 2008; Gratch et al., 2002], quests [de Lima et al.,
2019], stories [Riedl and Young, 2003; Mason et al., 2019; Jaschek et al., 2019], and
levels [Gao et al., 2022]. Even beyond direct gameplay, PCG has extended to generating
content such as music [Edwards, 2011; Boenn et al., 2011], leaderboards [Iosup et al.,
2010], and in-game news and broadcasts [Rossignol, 2010], contributing to enhanced
player immersion.

When examining games that employ PCG to create fundamental gameplay elements,
noteworthy examples emerge. Elite [Braben and Bell, 2023], for instance, features eight
3D wireframe galaxies with each galaxy comprising 256 procedurally generated star sys-
tems. Microsoft Minesweeper [Microsoft, 2023] employs PCG to establish the grid layout
of concealed mines. The game .kkrieger [Farbrausch, 2023] employs PCG not only for
generating meshes and textures but also for music. Dwarf Fortress [Bay 12 Games, 2023]
extensively employs PCG, encompassing narrative, history, creatures, and more, thereby
shaping a substantial portion of its game content. In the case of Spelunky [Mossmouth
LLC, 2023], tile-based levels are procedurally generated. The iconic Minecraft [Mojang
Studios, 2023b] constructs the three-dimensional world composed of cube blocks through
PCG techniques. RimWorld [Ludeon Studios, 2023] utilizes PCG to fashion narratives,
events, and world map customizations. Banished [Shining Rock Software, 2023] gener-
ates terrain maps through PCG. No Man's Sky [Hello Games, 2023] pioneers procedurally
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generated galaxies replete with planets and their diverse ecosystems. Minecraft Dun-
geons [Mojang Studios, 2023a] crafts dungeons imbued with monsters, traps, puzzles,
and treasures through PCG. Valheim [Iron Gate Studio, 2023] engenders maps featur-
ing an archipelago of islands set within an oceanic expanse. Meanwhile, Core Keeper
[Pugstorm, 2023] presents an underground world shaped by procedural generation. For
a comprehensive compilation of games utilizing PCG, refer to [Wikipedia contributors,
2023c].

One of the widely adopted approaches in PCG is the use of evolutionary algorithms,
which mimic the process of natural selection to evolve content iteratively based on pre-
de�ned �tness criteria. These algorithms have been employed to generate various game
elements, including game maps [Ra�e et al., 2014; Lara-Cabrera et al., 2014], platform
game levels [Thakkar et al., 2019], dungeon-type game levels [Font et al., 2016], game
character mechanics [Skj�rseth and Vinje, 2020; Pereira et al., 2021], and racing tracks
[Loiacono et al., 2011], leading to the creation of dynamic and engaging gameplay experi-
ences. Coevolutionary techniques, on the other hand, involve the simultaneous evolution
of multiple components of a game system, such as AI players and level generators, where
the level generators are evaluated by adapting AI players, and vice versa. This approach
yields an AI player trained on gradually more di�cult levels and a sequence of level
generators with gradually increasing di�culty [Nogueira-Collazo et al., 2015; Flimmel
et al., 2021], fostering emergent complexity and balance within the game environment.

In recent years, adversarial design has signi�cantly impacted PCG by introducing a
competitive element to the generation process. Adversarial design pits two AI systems
against each other: a generator tasked with generating content and an evaluator re-
sponsible for assessing its quality. This adversarial dynamic encourages the generator
to produce content that challenges the evaluator's ability to discern between generated
and human-created content, ultimately leading to the generation of high-quality game
assets [Mittalella et al., 2021]. Moreover, signi�cant advancements are occurring in the
�eld of PCG with the emergence of foundation models, such as GPT (Generative Pre-
trained Transformer) architectures. One such recent example is MarioGPT [Sudhakaran
et al., 2024], a �ne-tuned GPT2 model trained to generate tile-based game levels. Mari-
oGPT enables controllable level generation through text prompts, leveraging large-scale
pretraining on diverse datasets to learn rich representations of game content. These
advancements enable foundation models to generate coherent and contextually relevant
game elements across various genres and styles.

2.3.2 PCG in Physics-Based Environments

Creating content through procedural generation is a complex endeavour involving sev-
eral challenges. These include achieving satisfactory generation speed, which varies
depending on whether content is generated during gameplay or game development. En-
suring content reliability entails satisfying prede�ned quality criteria; for instance, a
dungeon must possess both entry and exit points. It is also important for the con-
tent to be diverse in order to prevent it from becoming monotonous. Additionally, the
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content should appear inventive rather than being obviously machine-generated. When
applied to physics-based settings, PCG faces additional complexities due to the in
u-
ence of physics. In such environments, devising content necessitates algorithms that
seamlessly merge physics simulations with essential design principles. These algorithms
must acknowledge the physical limitations of the environment, generating content that
aligns with these constraints for practical feasibility. Furthermore, precise determination
of game object positions is imperative to achieve intended outcomes during gameplay.
Many of the challenges encountered in generating content for physics-based environments
are relevant to the challenges faced in real-world physics scenarios [Stephenson, 2019].

Physics-based puzzle games have gained substantial attention within the PCG research
due to the intriguing physics-related challenges they present when generating content,
as previously discussed. Researchers have employed well-known physics puzzle games
like Angry Birds [Rovio, 2023] and Cut the Rope [ZeptoLab, 2023] as experimental
platforms to explore techniques for generating physics-based content. For instance, in
the case of Cut the Rope, investigations have revolved around the development of an
authoring tool for crafting and evaluating levels. This tool seamlessly merges automated
content design with the creative input of the designer [Shaker et al., 2013c]. Furthermore,
the application of evolutionary computation, particularly grammatical evolution, has
been examined for level creation [Shaker et al., 2013a]. Additionally, researchers have
adopted simulation-based strategies to assess playability [Shaker et al., 2013b], along
with a progressive method for generating levels that synergistically combines features of
search-based and constructive approaches [Shaker et al., 2015].

The researchers have devoted substantial attention to the exploration of level generation
in Angry Birds [Stephenson et al., 2019]. This e�ort has been strengthened by the An-
gry Birds level generation competition, typically conducted at the IEEE Conference on
Games [Renz et al., 2021]. This competition serves as an incentive for the development
of level generators designed for the game. In this research landscape, various approaches
have been pursued to address the multifaceted challenges of level generation in An-
gry Birds. Noteworthy methodologies encompass employing genetic algorithms for level
generation [Ferreira and Toledo, 2014a,c; Kaidan et al., 2016; Ferreira and Toledo, 2017;
Calle et al., 2019b,a; Salinas-Hern�andez and Garcia-Valdez, 2020], leveraging machine
learning techniques to optimize the runtime of genetic algorithm-based level genera-
tion [Pereira et al., 2016], devising strategies for generating stable structures within the
game's physical environment [Stephenson and Renz, 2016a,b], employing Monte Carlo
Tree Search for level creation [Graves, 2016], implementing constructive grammar for
generating architectural-style structures [Jiang et al., 2016], achieving variation, stabil-
ity, and solvability in generated levels [Stephenson and Renz, 2017] (Figure 2.8 illustrates
example levels generated by this generator), generating fun levels through pattern-struct
and preset-model approaches [Jiang et al., 2017], introducing a mixed-initiative system
for swift level prototyping [Campos et al., 2017], generating engaging physical structures
using image silhouettes [Zhou et al., 2018], dynamically adapting game level di�culty
via agent-based adaptive generation [Stephenson and Renz, 2019], generating levels in-
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Figure 2.8: Example Angry Birds game levels generated from the level generator pre-
sented by Stephenson and Renz [2017].

spired by Rube Goldberg Machine mechanisms [Abdullah et al., 2019, 2020], employing
deep generative models with sequential encoding and latent variable evolution for level
generation [Tanabe et al., 2021], creating block structures based on hand-drawn sketches
[Stephenson et al., 2021], generating physical structures for the game using generative
adversarial networks [Abraham, 2022] and utilizing prompt engineering for generating
levels [Taveekitworachai et al., 2023].

PCG also �nds application within certain physical reasoning environments that are dis-
cussed in Section 2.1.1. The designing and creation of tasks within these environments
predominantly rely on task templates developed by developers, complemented by auto-
mated generation techniques that produce modest variations of those handcrafted task
templates. For instance, PHYRE employs the strategy of task generation by manipu-
lating object positions within 25 handcrafted task templates. Similarly, Virtual Tools
employs a comparable approach, generating random tasks for reinforcement learning
agents by adjusting object dimensions or positions within prede�ned templates while
maintaining the original task solution. OGRE builds upon PHYRE and Virtual Tools,
adopting a similar generative process involving modi�cations to the shape, size, and loca-
tion of the baseline template. In the CausalWorld benchmark, the agent's task involves
rearranging blocks to attain a speci�ed goal con�guration of blocks. This benchmark
encompasses eight distinct task types, each equipped with a dedicated generator that
derives tasks by sampling new goal shapes from a prede�ned goal shape template.
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Chapter 3

Deceptive Level Generation for Angry
Birds

The AIBIRDS competition has spanned several years, aimed at fostering the advance-
ment of AI agents capable of outperforming human players in Angry Birds game levels.
Throughout the competition's history, diverse agents with varying approaches have been
employed to tackle this challenge. Despite considerable progress achieved by these agents
in recent years, they still face signi�cant limitations when confronted with deceptive lev-
els. This arises from the agents' struggles in grasping the intricacies of deceptive setups
within the physics-based environments, as well as their inclination to focus on select-
ing optimal individual shots rather than devising e�cient shot sequences. In order to
facilitate progress in addressing these shortcomings, we introduce an automated method-
ology for crafting deceptive game levels in Angry Birds, thereby equipping agents with
ample experimental data for enhancement. While numerous content generators for An-
gry Birds exist, they largely overlook the generation of deceptive levels. Within this
chapter, we present a procedural framework for generating deceptive levels across six
distinct deception categories aimed at confounding state-of-the-art Angry Birds playing
AI agents. Our evaluations illustrate that the generated deceptive levels exhibit qualities
akin to those crafted by human creators. Additionally, we establish metrics to assess the
stability, solvability, and degree of deception inherent in the generated levels.

3.1 Introduction

Procedural Content Generation (PCG) is a key area of investigation that focuses on
the algorithmic generation of game content in video game research, as we discussed in
Section 2.3. Game-playing agent development has bene�ted from PCG since PCG can
be used to generate a large amount of training data in a short period of time [Togelius,
2016]. Most of the current learning-based approaches embedded in AI agents require a
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huge amount of training data to be able to perform well [Zhu et al., 2016].

Video games are frequently used by AI researchers as testbeds for their research [Justesen
et al., 2019] and Angry Birds is one such example that provides interesting challenges
for AI agents when solving the game levels. PCG in Angry Birds is non-trivial due to
the physics constraints in the game. Any PCG algorithm should adhere to the physical
constraints of the game, and the positions of the game objects should be determined with
greater precision to ensure the expected outcomes can be obtained when playing. Similar
to an agent in a physical environment, Angry Birds playing agents have a continuous
action space. Hence, generating levels that can only be solved by intended actions is
challenging, especially when the levels are complex and require appropriate reasoning
capabilities to solve.

A deception for an AI agent can be seen as a characteristic of a task that `tricks' the
agent into making poor actions by exploiting its biases or limitations [Anderson et al.,
2018]. A deceptive game level has a reward structure that can lead the agent away from
the optimal strategy [Bontrager et al., 2019]. Previous work on Angry Birds presented
six categories of deceptions for the existing Angry Birds playing agents [Stephenson and
Renz, 2018]. Using handcrafted levels for those deception categories, they showed the
vulnerabilities of the state-of-the-art Angry Birds playing agents. The drawbacks of ex-
isting agents in handling deceptions show that there is room for further advancements
of agent capabilities. This urges the necessity of creating a su�cient number of chal-
lenging deceptive levels to satisfy the data requirement of current learning approaches
to facilitate research in developing advanced AI agents that can handle deceptions.

In this chapter, we present a methodology to generate deceptive levels in Angry Birds.
We consider the six deception categories presented by Stephenson and Renz [2018] and
de�ne level templates that enable the automatic generation of varied levels for each of
these deception categories. In addition to the level itself, a salient feature of this approach
is that the solution for the level is also generated and can be utilized by the agents in
the learning process. To evaluate our methodology, we de�ne metrics to measure the
stability, solvability, and deceptiveness of the generated levels. Moreover, to measure the
characteristics of the generated levels compared to human-created levels, we evaluate AI
agents' behaviour on both generated levels and handcrafted levels that require similar
capabilities to solve.

3.2 Background and Related Work

3.2.1 PCG in Angry Birds

Researchers have previously used several diverse approaches for procedurally generating
game levels for Angry Birds, as discussed in Section 2.3.2. This prior work mainly
focuses on preserving the stability of the physical structures in the levels, adjusting the
di�culty and enjoyability of the levels, and ensuring the levels are solvable. None of
them focuses on generating deceptive game levels that require challenging reasoning and
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planning capabilities to solve. In this work, we focus on generating game levels that
AI agents are not capable of solving through simple, intuitive approaches. Another
signi�cant di�erence from the existing work is our approach generates the solutions for
the levels, which can be bene�cial for learning AI agents in their training.

3.2.2 Deceptive Games

The concept of deceptive games was �rst presented in the study by [Anderson et al.,
2018]. They create a suite of deceptive arcade-style games for the General Video Game
AI (GVGAI) framework [Perez-Liebana et al., 2016] and explore the e�ect of those games
on game-playing agents. Building on that idea, an approach to generate deceptive levels
for games in the GVGAI platform is discussed in [Zafar et al., 2018] and a methodology
to evaluate agents on deceptive levels is presented in [Sabah and Zafar, 2021].

In the context of complex physics simulation games, as already mentioned above, the
work on deceptive Angry Birds levels by Stephenson and Renz [2018] suggests six di�er-
ent categories of deceptions that can trick or exploit the current state-of-the-art Angry
Birds playing agents. While these deceptions do not a�ect all Angry Birds agents equally,
no agent was able to successfully handle all deception categories. We consider these same
six deception categories in our generation process. The six deception categories are de-
scribed below and examples for those categories are shown in Fig. 3.1.

ˆ Rolling/falling objects : This deception uses the fact that objects of one en-
tity can fall or roll onto another entity to create an impact. An agent needs to
understand that an object can fall or roll and that object can be used to hit targets.

ˆ Clearing paths : This deception occurs when there are obstacles that need to be
removed or destroyed before a target can be reached. To deal with this deception,
an agent needs to understand that in order to reach a target, it should �rst clear
the path to the target.

ˆ Entity strength analysis : This deception requires an agent to analyse the
strengths of the entities in a level. The strength of an entity depends on the factors
such as its material, shape, and size. An agent should be capable of determining
the physical weaknesses/strengths of individual entities and interact accordingly
to solve the level.

ˆ Non-greedy actions : In this deception, an action that appears to be less e�ective
in the short term compared to another possible action, will gain higher advantages
in the long term. The agent should look ahead and plan the actions using its
knowledge of the environment rather than performing a greedy action that gives a
higher short term reward.

ˆ Non-�xed tap time : The special powers of the birds are activated by tapping
while the bird is in 
ight. In this deception, an agent needs to activate the special
powers of the birds at non-�xed times, opposed to tapping at a pre-determined
�xed time.
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(a) Rolling/falling objects (b) Clearing paths

(c) Entity strength analysis (d) Non-greedy actions

(e) Non-�xed tap time (f) TNT

Figure 3.1: Six example handcrafted levels for each deception category presented in
[Stephenson and Renz, 2018]. The solutions for the levels are, (a) target
the structure which collapses and falls on top of the pig, (b) use the �rst two
birds to clear the path for the third, (c) use blue and yellow birds respec-
tively on ice and wood structures, (d) �rst make the non-greedy shot that
kills fewer pigs with black bird, (e) tap the yellow bird (accelerate) before
hitting the block, and (f) target pig directly and ignore TNTs.

ˆ TNT : The TNT explosives in the game explode when hit, causing damage or
pushing nearby objects. In this deception, an agent needs to use TNTs to kill pigs
or TNTs are used to distract the agent from the objective of killing pigs.

3.3 Terminology

In this chapter, we use the term environment to refer to the space where an agent
can sense and act, which is not a part of the agent. A stand-alone, self-contained set of
physically stable objects in the environment is termed as aphysical entity. A deception is
considered as a characteristic of a task that exploits the cognitive biases of an agent and
causes it to make sub-optimal decisions [Anderson et al., 2018]. Atactic is a sequence
of an agent's actions (i.e., bird release points and tap times) that involves interacting
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Figure 3.2: Deceptive level generation methodology.

with the environment. A solution tactic is a speci�c tactic that solves a given level when
executed. Finally, a strategy is a plan that an agent tries to solve a level (e.g. shooting
birds targeting at pigs). For a strategy, there can be multiple tactics that may or may
not solve the level.

3.4 Proposed Procedure

In this section, we present the proposed deceptive level generation procedure for Angry
Birds. Fig. 3.2 shows the main components of the generation procedure. The four
components shown in blue are the modules in the procedure and the four components
in red are the inputs/outputs of those modules. The generation procedure does not
involve creating physical entities; instead, it extracts physical entities created from ex-
isting content generators. This provides access to a wide range of content from various
generation methods. Similarly to using existing content generators, customized hand-
crafted content can be used as well. The generation procedure consists of two stages:
an o�ine stage and an online stage. The o�ine stage is shown inside the grey box (�rst
row) and the online stage is shown inside the purple box (second row). The o�ine stage
needs to be executed only once for an extracted set of physical entities. When a level
generation request is received, the online stage is executed to generate a level using the
o�ine stage's stored data. In subsequent subsections, we discuss the four components in
our generation procedure:Physical Entity Extraction Module , Physical Entity Analyzer
Module, Level Template Matching Module, and Level Validation Module.

3.4.1 Physical Entity Extraction Module

This module takes already generated game instances from Angry Birds content gener-
ators and extracts physical entities from those instances. The game instances can be
complete game levels or parts of game levels with physical entities. We use a collection of
existing Angry Birds level generators [Stephenson et al., 2019] to generate a set of game
instances. Entities are copied from these instances using a qualitative reasoning pro-
cess that iteratively extracts entities. Algorithm 1 shows the physical entity extraction
process that can be applied to a game instance with multiple physical entities. When
formulating the algorithm, we de�ne the term supporter using the support graph similar
to how authors have de�ned it in [Stephenson et al., 2021]. If the bottom horizontal edge
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Algorithm 1 Extract physical entities
Input : Game instance with physical entities
Output : Set of extracted physical entities
1: entitiesExtracted = fg
2: objectsRemaining = all objects in the instance
3: while objectsRemaining is not empty do
4: topObject = topmost object of objectsRemaining
5: entityExtracting = topObject and supporters of topObject
6: while True do
7: boundingBox = bounding box of entityExtracting
8: entityExtracting = objects inside boundingBox
9: if boundingBox size not increased then

10: Break
11: add entityExtracting to entitiesExtracted
12: remove objects of entityExtracting from objectsRemaining
13: return entitiesExtracted

Figure 3.3: An illustration of the extraction process for a single entity. The leftmost
�gure (start) shows the entity that needs to be extracted. Each step corre-
sponds to an iteration of the algorithm, and the rightmost �gure (end) shows
the extracted entity. Selected objects in each step are shown in green, and
the bounding box of selected objects is shown in red dotted lines.

of an object Oi is in contact with the top horizontal edge of another object Oj (i.e., Oi

is resting on top of Oj ), then the support graph contains an edge pointing from object
Oi to Oj . In a given support graph, if there exists a path from object Oi to object Oj ,
then object Oj is considered as a supporter of the objectOi (Oj supports Oi ). Objects
placed on the ground do not have any supporter and hence has an empty support graph.
Fig. 3.3 shows an example of how a physical entity is extracted iteratively using this
algorithm.

3.4.2 Physical Entity Analyzer Module

After extracting physical entities, the Physical Entity Analyzer Module is used to analyze
those entities individually by interacting with them and observing the outcome. In
Angry Birds, interactions with the entities can only be done by shooting birds from
the slingshot and tapping to activate the bird's special power. To predict the result
of physical interactions, we can use either qualitative methods [Walega et al., 2016;
Zhang and Renz, 2014], which are typically faster but less accurate, or simulation-based
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methods [Battaglia et al., 2013], which are typically more accurate but slower. Using
qualitative methods in Angry Birds for physical predictions has proven to be less accurate
and robust for large complex entities [Stephenson and Renz, 2017]. Therefore, we use a
simulation-based method to perform interactions and record the outcomes.

We developed a portfolio agent who can play Angry Birds with four di�erent strategies
adopted from previous Angry Birds playing AI agents discussed in Section 2.1.3. They
are, 1) shooting birds (without special powers) targeting pigs in the entity, 2) shooting
birds (without special powers) targeting at TNTs in the entity, 3) shooting birds (without
special powers) targeting reachable blocks in the entity, and 4) shooting birds with special
powers (activated at di�erent times) targeting at pigs. The above strategies also have
di�erent variants (i.e., tactics) based on the order of the targets (if multiple targets
exist), the shooting angle, and the activation time of the bird's special power.

Each entity is tested with a predetermined �xed set of tactics. When interacting with
the entities, the objects in the entity can be subjected to move, collide, damage, or
destroy due to the force applied to the entity. For each interaction (i.e., a bird shot),
data is recorded in four steps:

ˆ Entity data before the interaction (e.g. the number of objects in the entity, the
entity's bounding box size).

ˆ Interaction data (e.g. the magnitude and the location of the force applied on the
entity due to the interaction).

ˆ Dynamic data when the objects in the entity are moving as a result of the interac-
tion (e.g. objects that have gone out of the entity's original bounding box, location
and the velocity of the objects gone out).

ˆ Entity data after the interaction when all the objects become stationary (e.g. the
number of objects in the entity, the entity's bounding box size).

The data gathered through this analysis is attached to the entity as metadata, and a
repository of entities with metadata is maintained. This is the end of the o�ine stage
of the generation process; the next steps are done online.

3.4.3 Level Template Matching Module

The online stage of the physical deceptive level generation process starts with a gen-
eration request coming to theLevel Template Matching Module, specifying the desired
deception category. This module generates a candidate level for that deception category
using pre-de�ned level templates. For a deception, a level template contains constraints
that entities should satisfy and rules for level generation. When generating a level, the
level template considers possible interactions that an agent can perform and the outcomes
of those interactions obtained from the entities' metadata. The entities that satisfy the
constraints in the template are used to generate the level, following the generation rules.
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When generating levels,Level Template Matching Modulealso creates the solution for
the level using the interaction data (bird shots) in the metadata of the entities used to
generate the level. The solution has the interaction data that solves the level (i.e., the
solution tactic of the level). When designing the level templates, we attempt to make the
deceptive level solvable only by using the generated tactic. We assume if an agent uses
the solution tactic to solve the level, the agent understands the deception. Restricting
the solvability only to the generated solution prevents the agents from solving the levels
using other strategies without realizing the deception.

To facilitate the template design discussion, on top of the terminology discussed in
Section 3.3, we de�ne the following terms. Thegoal of an Angry Birds player is, killing
all the pigs in the level using the given number of birds. We refer to the termsolving an
entity as killing all the pigs within an entity. An entity is deemed solvable if all the pigs
within the entity can be killed using the given birds. An outperforming solution tactic
(OST) refers to the solution tactic that uses the minimum number of birds to solve an
entity compared to other solution tactics tested. If there are multiple solution tactics
with the fewest number of birds needed to solve an entity, then there is no OST for that
entity. The level templates designed for the six deception categories are explained below.

Rolling/Falling Objects

A level with this deception is created using two types of entities, called senders and
receivers. A sender gives an object out either by rolling or falling when an agent interacts
with the entity. A receiver uses the impact of the sender's rolling/falling object towards
achieving the goal (i.e., killing the pigs). The locations of the two entities are determined
such that the rolling/falling object's impact can be used to replace the impact of an
action in the receiver's OST. The placement of the two entities should also ensure that
the receiver's OST no longer allows the agent to solve the level. This is done by placing
the sender such that it blocks the bird trajectories of the actions in the receiver's OST.
The reachability of the target objects for the birds shot from the slingshot is veri�ed to
ensure the solvability of the level. Finally, considering the interactions needed for the
sender and the receiver to solve the level, the number and types of birds are determined
and the solution for the level is generated. Algorithm 2 shows the pseudocode of this
level template.

Clearing Paths

A level with this deception is created using two types of entities, called obstacle and
obstructed. The obstacle blocks the OST of the obstructed entity. The agent should
�rst substantially collapse the obstacle to clear a path to reach the obstructed entity. To
ensure the agent interacts with the obstacle with the objective of collapsing to clear the
path, entities that can only be collapsed with a speci�c tactic are selected as obstacles
(i.e., the agent needs to execute a speci�c tactic by analyzing the obstacle to collapse
it substantially). Considering the interactions needed to clear the obstacle and execute
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Algorithm 2 Rolling/falling objects
Input : Sender entity, Receiver entity
Output : A level with rolling/falling objects deception
1: if sender has suitable objects that can be rolled/fallen then
2: if receiver has an OST then
3: while generation unsuccessfuldo
4: get sender's rolling/falling object's trajectory
5: get OST of receiver
6: generate level by matching sender and receiver
7: verify the reachability of targets
8: if generation successfulthen
9: break

10: if maximum generation attempts reached then
11: return none
12: allocate birds to level
13: generate solution tactic
14: return generated level
15: return none

the OST of the obstructed entity, the birds are allocated to the level and the solution is
generated. The pseudocode for this level template is given in Algorithm 3.

Algorithm 3 Clearing paths
Input : Obstacle Entity, Obstructed Entity
Output : A level with clearing paths deception
1: if obstacle entity can be cleared substantially then
2: if obstructed entity has an OST then
3: while generation unsuccessfuldo
4: generate level by matching obstacle and obstructed entities
5: verify the reachability of targets
6: if generation successfulthen
7: break
8: if maximum generation attempts reached then
9: return none

10: allocate birds to level
11: generate solution tactic
12: return generated level
13: return none

Entity Strength Analysis

The strength of an entity is considered with respect to its capability of protecting pigs
within it. In this level template, di�erent bird types are used, as this a�ects the maximum
damage that can be done to an entity. An agent needs to analyze the strength of the
entities in the level and determine the correct bird type to use on each entity. Algorithm
4 shows the pseudocode of this level template. The number of birds that needs to solve
an entity is termed as the bird usage in the pseudocode. The template creates levels
by selecting two entities: one entity that is strong against one bird type (i.e., high bird
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usage) but weak against another (i.e., low bird usage) and another entity that shows
opposite strengths and weaknesses to the same bird types. The solution of the level is
generated considering the interactions needed to solve the two entities using the selected
bird types.

Algorithm 4 Entity strength analysis
Input : Entity 1, Entity 2
Output : A level with entity strength analysis deception
1: for birdX in all bird types do
2: for birdY in all bird types except BirdX do
3: if entity1 solvable by birdX and entity2 solvable by birdY then
4: if entity1 birdX usage < entity2 birdX usage and entity2 birdY usage < entity1 birdY

usagethen
5: generate level with entity1, entity2, birdX, birdY
6: break
7: else if entity1 solvable by birdY and entity2 solvable by birdX then
8: if entity1 birdY usage < entity2 birdY usage and entity2 birdX usage < entity1 birdX

usagethen
9: generate level with entity1, entity2, birdX, birdY

10: break
11: if generation successfulthen
12: verify the reachability of targets
13: generate solution tactic
14: return generated level
15: return none

Non-greedy Actions

In Angry Birds, greedy agents tend to kill the most pigs in a single action. In this level
template, an entity that has more pigs and is easy to solve (termed a greedy entity) is
combined with an entity that has a few pigs and is hard to solve (termed a non-greedy
entity). The easiness/hardness of an entity is based on the type and the number of
birds needed to solve it. To ensure the level can only be solved by doing the non-greedy
action �rst, the two selected entities should have OSTs with di�erent bird types. The
order of birds in the level is selected such that the birds needed to solve the non-greedy
entity are given �rst. As the agent cannot change the order of the birds, if it chooses to
solve the greedy entity �rst, then it cannot solve the non-greedy entity. The solution of
the level is generated considering the OSTs of the two entities. Algorithm 5 shows the
pseudocode of this template.

Non-�xed Tap Times

The e�ect of a bird's special power on an entity depends on the time that an agent taps
the bird during its 
ight. A bird can cause more damage to the entity if it is tapped at
the correct time. The correct tap time needs to be determined considering the distance
to the target and the bird's special power. Entities that can only be solved by using a
speci�c tap time of a bird are selected as feasible entities to generate levels with this
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Algorithm 5 Non-greedy actions
Input : Greedy Entity, Non-greedy Entity
Output : A level with non-greedy actions deception
1: if 2 entities' 2 OSTs use di�erent birds then
2: if greedy entity is easier to solve than non-greedy entity then
3: while generation unsuccessfuldo
4: generate level with the greedy entity and non-greedy entity
5: allocate birds in the order for non-greedy and greedy entities
6: verify the reachability of targets
7: if generation successfulthen
8: break
9: if maximum generation attempts reached then

10: return none
11: generate solution tactic
12: return generated level
13: return none

deception. Two entities with two di�erent tap times are used to generate a level, to
ensure that agents with �xed tap times fail to solve the level. The solution is generated
taking into account the interactions needed to solve both entities in the level. Algorithm
6 shows the pseudocode of this level template.

Algorithm 6 Non-�xed tap time
Input : Entity 1, Entity 2
Output : A level with non-�xed tap time deception
1: for birdX in all bird types with special powers do
2: if entity1 only solvable by birdX's speci�c tap time (T x ) then
3: for birdY in all bird types with special powers do
4: if entity2 only solvable by birdY's speci�c tap time (T y ) then
5: if T x 6= T y then
6: generate level with entity1, entity2, birdX, birdY
7: break
8: if generation successfulthen
9: verify the reachability of targets

10: generate solution tactic
11: return generated level
12: return none

TNT

TNT deception is generated using two level templates. Using the �rst template, if
there is an OST for an entity and that tactic involves targeting TNTs, then a level is
generated directly with this entity and the birds needed for its OST. This form of the
deception needs an agent to understand that TNTs explode when hit to cause greater
damage, which can be used to achieve the goal. In the second template, TNTs are
used to distract an agent. This template selects an entity with TNTs and without
pigs (termed as a distracting entity) along with another entity with pigs (termed as a
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distracted entity). The birds allocated to the level are the birds needed for the OST of
the distracted entity. Shooting a bird to explode the TNTs will not help solve the level
and will not leave enough birds to solve the distracted entity. The pseudocode for the
second template is shown in Algorithm 7. The solution for the level is the OST of the
distracted entity.

Algorithm 7 TNT
Input : Distracting Entity, Distracted Entity
Output : A level with TNT deception
1: if distracting entity has TNTs and no pigs then
2: if distracted entity has an OST then
3: generate level with distracting entity and distracted entity
4: allocate birds needed for the distracted entity's OST
5: verify the reachability of targets
6: generate solution tactic
7: return generated level
8: return none

Once a deceptive level and its solution have been generated using one of these templates,
they are passed to theLevel Validation Module.

3.4.4 Level Validation Module

The last module in the generation process validates the physical stability and solvability
of the generated levels. In Angry Birds, all the objects should remain stationary at the
start of the level. The Level Validation Module �rst veri�es the stability of the level using
the Box2D physics engine. The velocities of objects in the level are observed after two
seconds of simulating the level to determine the stability of the level. After con�rming
stability, the Level Validation Module then veri�es the solvability of the level, using its
generated solution tactic. The �nal outcome of this process is a stable deceptive level,
along with its con�rmed solution.

3.5 Results and Evaluations

In this section, we present the results and evaluation of the proposed deceptive level
generation procedure. The majority of our implementation was coded using Python
3.7. The exceptions were thePhysical Entity Analyzer Module and the Level Validation
Module that required simulating the Box2D physics engine in Unity, coded in C#. The
simulations were done by speeding up the physics engine by 50 times. The software was
run on a Windows 10 desktop PC with an i9-9900KS CPU and 64GB RAM. The average
time (for 100 runs) consumed by each module is:Physical Entity Extraction Module took
21 milliseconds to extract an entity with 16 blocks,Physical Entity Analyzer Module took
85.71 seconds to analyze an entity using ten tactics,Level Template Matching Module
took 2.64 seconds to generate a level, andLevel Validation Module took 9.01 seconds
to validate a level. Therefore, the online stage of the generation process can generate a
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(a) Rolling/Falling Objects (b) Rolling/Falling Objects (c) Clearing Paths

(d) Clearing Paths (e) Entity Strength Analysis (f) Entity Strength Analysis

(g) Non-Greedy Actions (h) Non-Greedy Actions (i) Non-�xed Tap Time

(j) Non-�xed Tap Time (k) TNT (Solution) (l) TNT (Distraction)

Figure 3.4: Examples of generated levels for the six deception categories. The solution
tactic for each level is illustrated using the red dotted arrows. The arrow
path shows the trajectory of the bird, and the arrowhead is pointed to the
target. Numbers show the order of bird shots. `Tap atx%' means the bird
needs to be tapped at the length ofx% in its trajectory path, which is only
available for birds with special powers. The blue lines in (a) and (b) are the
trajectories of falling objects.
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Table 3.1: Stability rate ( Ri ), solvability rate ( Si ), the average deceptive score (D i ),
and the average di�erence of the solve rates for human-created and generated
levels (Ci ) for the six deception categories.

Deception Category Ri Si D i Ci (%)

Rolling/falling Objects 1.00 0.82 0.91 3.41
Clearing Paths 0.98 0.95 0.90 -1.75

Entity Strength Analysis 0.98 0.90 0.89 -6.67
Non-greedy Actions 1.00 0.81 0.95 7.56
Non-�xed Tap Time 0.97 0.87 0.97 0.00

TNT 0.96 0.92 0.95 -9.26

deceptive level in 11.65 seconds on average. Twelve levels generated for the six deception
categories are shown in Fig. 3.4.

In the following sections, we evaluate our generated levels using four metrics that measure
stability, solvability, deceptiveness, and similarity to human-created levels. Even though
both stability and solvability are normally veri�ed by the Level Validation Module, this
module was disabled for these experiments in order to assess how often a generated level
passed each of these validity checks.

3.5.1 Stability

The stability rate ( Ri ) of a deception categoryi is calculated as the percentage of levels
that were stationary within the Box2D physics engine at the start of the game levels. A
set of 100 levels for each deception category was used (600 levels in total). The results are
presented in the second column of Table 3.1. This shows that our generation procedure
is capable of generating levels with a stability rate of almost 100%.

3.5.2 Solvability

The physical outcomes of the interactions considered in the generation process might
di�er from the outcomes when actually playing the level, typically due to di�erences in
the location of entities when generating levels versus their original location during entity
analysis, as discussed in Section 3.4.2. Therefore, a generated level might not always
be solvable using the intended solution tactic (i.e., the generated solution). Hence,
we evaluate the solvability of the generated levels to measure the competence of the
generator in creating levels that can be solved with the intended solution tactic.

The solvability rate ( Si ) of a deception category i is calculated as the percentage of
levels which could be solved using its provided solution tactic. A set of 50 levels for each
deception category was used (300 levels in total). The results are presented in the third
column of Table 3.1. This shows that our generation procedure is capable of generating
levels with a solvability rate higher than 81% for the six deceptions.

46



3.5 Results and Evaluations

3.5.3 Deceptiveness

To measure the degree of deception of the levels in a deception category, we de�ne a
metric, the average deceptive score. A level is considered less deceptive if it can be
solved by multiple tactics without understanding the deception. The solution tactic
created when generating a level is the tactic that an agent would follow if the deception
is understood. To calculate the deceptive score of a level, the level is tested with di�erent
known tactics, and the number of tactics that solved the level, excluding the solution
tactic, is used. Equation 3.1 shows the average deceptive score (D i ) calculated for a
deception category i by averaging the deceptive scores of all the levels tested for the
deception. N is the total number of levels tested,Tn is the total number of tactics used
to test the nth level, and Pnt is 1 if the nth level is solved byt th tactic or 0 otherwise.
D i 2 [0; 1] and a higher score means a higher deceptiveness.

D i =
1
N

NX

n=1

1
Tn

TnX

t=1

(1 � Pnt ) (3.1)

For this experiment, we developed and ran a portfolio agent with ten variants of strate-
gies mentioned in Section 3.4.2. A set of 50 levels for each deception category was
used (300 levels in total). The fourth column of Table 3.1 shows the average deceptive
score calculated for the six deceptions. The results show that our method can generate
deceptive levels with an average deceptive score over 0.89 for the six deceptions.

3.5.4 Comparison with Human-Created Levels

From human capabilities, we are very adept at creating deceptive levels. Therefore,
we evaluate generated levels against human-created levels by examining whether the
generated levels exhibit similar characteristics to the human-created levels for AI agents.
We compare the solve rates of agents for human-created and generated levels that belong
to the same deception category. The average level solve rate di�erence between the
human-created and generated levels (Ci ) for a deception categoryi is shown in Equation
3.2. A is the number of agents tested,M is the total number of human-created levels, and
N is the total number of generated levels.Pam is 1 if the ath agent solvedmth human-
created level or 0 otherwise, similarlyPan is 1 if the ath agent solvednth generated level
or 0 otherwise. A positive value for Ci indicates that the generated levels are more
di�cult to solve than the human-created levels on average for AI agents and vice versa.

Ci =
1
A

AX

a=1

 
1

M

MX

m=1

Pam �
1
N

NX

n=1

Pan

!

(3.2)

For this evaluation, we used 30 handcrafted Angry Birds levels from the previous work
[Stephenson and Renz, 2018] representing the six deception categories (�ve levels on
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3 Deceptive Level Generation for Angry Birds

Figure 3.5: Level solve rates of three agents for human-created and generated levels. The
deception indexes on the x-axis are in the order: rolling/falling objects (1),
clearing paths (2), entity strength analysis (3), non-greedy actions (4), non-
�xed tap time (5), and TNT (6).

average per category). We generated 300 levels from our generator (50 levels per cate-
gory). Three state-of-the-art Angry Birds agents, Datalab, Eagle's Wing, and Bambirds
discussed in Section 2.1.3, were used for the experiment. The solve rates of the three
agents for the six deceptions for human-created and generated levels are shown in Fig.
3.5. This �gure depicts that the solve rates of the generated levels are correlated to
the solve rates of the human-created levels. This portrays that agents show similar
behaviours when playing both human-created and generated levels. TheCi values (per-
centage) calculated for the six deceptions from the results of the three agents are in the
�fth column of Table 3.1. The levels generated for two deception categories were more
di�cult to solve than the human-created levels, while three deception categories were
easier. The human-created and generated levels of non-�xed tap time deception were
equally di�cult for the agents.

3.6 Conclusions and Future Work

In this chapter, we have presented a methodology to generate deceptive game levels for
Angry Birds. The proposed methodology can generate levels for six deception categories
that the state-of-the-art Angry Birds playing agents are vulnerable to. Even though the
idea of handcrafting deceptive levels for Angry Birds has been previously investigated,
this is the �rst attempt at generating deceptive levels for a complex physics-based game
like Angry Birds. In addition, our approach generates the solution for the levels, which
is a feature that is not available in any of the existing Angry Birds level generators
and which could be bene�cial for learning agents in their training process. The levels
generated from the proposed procedure were evaluated using four metrics: stability,
solvability, deceptiveness, and a comparison with human-created levels. The results of
these metrics demonstrate that the generation process can competently create deceptive
levels for the six deceptions considered.
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3.6 Conclusions and Future Work

This work aims to enable the development of advanced Angry Birds playing agents that
can perform well under deceptions by providing su�cient training/testing data. To
deal with these deceptions, the AI techniques of the current agents can be improved
to expand their reasoning, planning, and generalizations skills. Future level generation
research can involve generating more complex levels by combining multiple deception
categories. Additional deception categories may also be proposed if more 
aws within
the state-of-the-art agents can be identi�ed. The deception categories we have examined,
rolling/falling objects, path clearing, entity strength analysis, and non-greedy actions,
�nd parallels in real-world physical scenarios. Consequently, this study can establish
a foundational framework for generating deceptive challenges within realistic physical
environments.
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Chapter 4

Phy-Q: A Testbed for Physical
Reasoning

While humans possess a natural adeptness at comprehending the behaviours of physical
objects and selecting appropriate actions to achieve objectives, this ability remains a
formidable challenge for AI systems. In response, we propose a new testbed aimed
at addressing this challenge by compelling agents to reason about physical scenarios
and respond intelligently. Stepping beyond the domain of physical deceptions in Angry
Birds discussed in the above chapter, our research advances by drawing inspiration from
the foundational physical understanding inherent in human infancy and the essential
skills vital for robotic navigation within real-world environments. Within this context,
we identify �fteen essential physical scenarios. In the testbed, we craft diverse task
templates for these scenarios, ensuring that each scenario's task templates share a single
speci�c strategic physical rule for the solution. This structured approach enables us to
evaluate two levels of generalization:local generalization and broad generalization. We
conduct a comprehensive evaluation involving human players, learning agents employing
varied input types and architectures, and heuristic agents employing di�erent strategies.

Motivated by the methodology used to calculate human IQ, we introduce the concept of
the physical reasoning quotient (Phy-Q score). This score serves as a metric for gaug-
ing the physical reasoning intelligence of agents within the context of the considered
physical scenarios. Our evaluation yields two signi�cant �ndings: Firstly, all agents fall
signi�cantly short of human performance. Secondly, learning agents, despite display-
ing competence inlocal generalization, grapple with grasping the underlying physical
reasoning principles and struggle to achievebroad generalization. We encourage the de-
velopment of intelligent agents capable of attaining Phy-Q scores comparable to human
performance.

To access the testbed, please refer to:https://github.com/phy-q/benchmark .
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4 Phy-Q: A Testbed for Physical Reasoning

4.1 Introduction

A fundamental aspect of human cognitive progression lies in the capacity to deduce
properties and behaviours of objects within physical environments [Yi* et al., 2020;
Davis, 2006]. As discussed in Section 2.1, humans cultivate these physical reasoning
skills right from their earliest stages of development. The evaluation of the ability to
generalize performance across novel physical puzzles stands as a prevalent metric for
gauging physical reasoning capabilities in contexts as varied as children [Diezmann and
Watters, 2000; Cheke et al., 2012], animals Perdue et al. [2018]; Emery and Clayton
[2009]; Taylor et al. [2009]; Jelbert et al. [2014], and AI agents Bakhtin et al. [2019];
Allen et al. [2020a,b]; Ahmed* et al. [2021].

Chollet's study [Chollet, 2019] on the measure of intelligence proposes a qualitative spec-
trum of di�erent forms of generalization that includes local generalization and broad
generalization. Current evidence [Lake et al., 2017; Jo and Bengio, 2017; Marcus,
2018; Justesen et al., 2018] suggests that contemporary deep learning models are local-
generalization systems, i.e., systems that adapt to known unknowns within a single task.
Broad generalization, on the other hand, can be characterized as `adaptation to unknown
unknowns across a broad category of related tasks' and is being increasingly emphasized
among the AI research community [Chollet, 2019; Geirhos et al., 2020; Firestone, 2020].
Moreover, when solving physics puzzles, it is common that a player must use a strat-
egy to work out a plan and must use dexterity to accurately execute the strategic plan
[Isaksen et al., 2017]. For instance, in a snooker game, a player needs to plan the path
of the white cue ball, e.g., where it should go and where to stop, and then execute the
strike that precisely produces the planned path. One of the views of cognitive psychol-
ogy researchers is that humans possess inaccurate forward physics prediction models
[McCloskey, 1983; Smith and Vul, 2013; Siegler, 1976; Keil, 2003; Gilden and Pro�tt,
1994; Levillain and Bonatti, 2011; Lawson, 2012; Pro�tt et al., 1990] and hence require
practice to improve dexterity, high dexterity requirements of physics tasks make it unfair
to compare AI agents' physical reasoning ability with average humans'. For example,
when a human player fails a physics puzzle, it is hard to tell if it is due to incorrect
physical reasoning or due to the inability to make precise actions. Despite the recent
advancement in physical reasoning benchmarks and testbeds [Bakhtin et al., 2019; Allen
et al., 2020a,b; Riochet et al., 2020; Yi* et al., 2020; Wolf, 2020; Ahmed* et al., 2021;
Bear et al., 2021; Crosby et al., 2020], there is a lack of a benchmark or a testbed with
human comparable strategic physics puzzles and one that explicitly evaluates learning
agents' local and broad generalization.

To close these gaps, we propose a new testbed Phy-Q and the associated Phy-Q score
that measures physical reasoning intelligence using the physical scenarios we identi�ed.
Inspired by the physical knowledge acquired in infancy and the abilities required by the
robots to operate in the real world, we have created a wide variety of tasks with low
dexterity requirements in the video game Angry Birds. Also, we included a module to
aid trajectory planning. We believe the contributions from this work pave the way to
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develop agents with human-level strategic physical reasoning capabilities.

Our main contributions can be summarized as follows:

ˆ Phy-Q: A testbed for physical reasoning: We designed a variety of task
templates in Angry Birds with 15 physical scenarios, where all the task templates
of a scenario can be solved by following a common strategic physical rule. Then
we generated task instances from the templates using a task variation generator.
This design allows us to evaluate both thelocal and the broad generalizationability
of an agent. We also de�ne the Phy-Q score, a quantitative measure that re
ects
physical reasoning intelligence using the physical scenarios we considered.

ˆ An agent-friendly framework: We propose a framework, which allows training
multi-agent instances simultaneously with accelerated game-play speed up to 50
times.

ˆ Establishing results for baseline agents: The evaluation consists of nine
baseline agents: four of our best-performing learning agents, four heuristic-based
agents, and a random agent. For each of the baseline agents, we present the
Phy-Q score, the broad generalization performance, and the local generalization
performance. We have collected human player data so that agent performance can
be directly compared to human performance.

ˆ A guidance for agents in AIBIRDS competition: In 2016, Angry Birds
was considered to be the next milestone in AI where AI will surpass humans
[Grace et al., 2018]. A time horizon of four years was predicted and so far, such a
breakthrough seems very unlikely. In the AIBIRDS competition, heuristic methods
generally perform better than their deep learning counterparts, but it remains
unclear what has contributed to the gap in the performances. It has also not yet
been analysed why current AI agents fall short when compared to humans. By the
systematic analysis of agents from the AIBIRDS competition, we show how they
need to be improved to achieve human-level performance.

4.2 Background and Related Work

In this section, we conduct a comparison between ten related physical reasoning bench-
marks and two physics-based AI game competitions to show how Phy-Q testbed advances
upon existing work. The comparison is made with respect to six criteria. 1) Measuring
broad generalizationin individual physical scenario/s, i.e., testing the ability of an agent
to generalize to tasks that require the same physical rule to solve. 2) Categorization
of tasks of the test environment into di�erent physical scenarios, i.e., agents can be
evaluated for individual scenarios to recognize the scenarios that they can perform well.
3) Procedural generation of tasks or variations of the tasks, i.e., the tasks/variants of
the tasks in the test environment are created algorithmically, facilitating the users to
generate any amount of data. 4) Destructibility of objects in the environment, i.e., if
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4 Phy-Q: A Testbed for Physical Reasoning

Table 4.1: Comparison of Phy-Q with related physics benchmarks and competitions

Test generalization categorization procedurally destructible observe human
Environment to individual of tasks to generated objects outcome of a player

physical physical tasks desired physical data
scenario/s scenarios variations action

PHYRE 7 7 X 7 X 7
Virtual Tools 7 X 7 7 X X
OGRE 7 7 X 7 X 7

IntPhys 2019 X X X 7 7 X
CLEVRER X 7 X 7 7 7
CATER X X X 7 7 7
Physion X X X 7 7 X
CoPhy X X X 7 7 X

CausalWorld X X X 7 X 7
RLBench 7 7 X 7 X 7

Computational 7 7 7 7 X 7
Pool
Geometry 7 7 X 7 X 7
Friends

AIBIRDS 7 7 X X X X
Phy-Q (ours) X X X X X X

the environment contains objects that can be destroyed upon the application of forces.
Having destructible objects makes the environment more realistic than an environment
that only has indestructible objects since the agents need to consider the magnitude of
the force that is applied to the objects. For example, when a robot moves a cup, it
needs to reason that the force to exert should be large enough to grab the cup but not
too large to break it. 5) Observing the outcome of a desired physical action, i.e., if an
agent can physically interact and observe the outcome of the action the agent takes. 6)
Inclusion of human player data, i.e., if the evaluation has results of human players.

For this comparison, we direct our attention towards the physical reasoning environments
detailed in Section 2.1.1. These include PHYRE [Bakhtin et al., 2019], Virtual Tools
game [Allen et al., 2020b], and OGRE [Allen et al., 2020a], which are game-based bench-
marks; IntPhys [Riochet et al., 2020], CLEVRER [Yi* et al., 2020], CATER [Girdhar
and Ramanan, 2020], and Physion [Bear et al., 2021], which are video based benchmarks;
CoPhy [Wolf, 2020] which is an image-based benchmark; CausalWorld [Ahmed* et al.,
2021] and RLBench [James et al., 2020] which are robotic benchmarks; Computational
Pool [Archibald et al., 2010] and Geometry Friends [Prada et al., 2015], which are AI
game competitions. We also included the AIBIRDS [AIBIRDS, 2023] competition for
the comparison to show what properties in Phy-Q facilitate the systematic evaluation of
AIBIRDS competition agents. Table 4.1 summarises the comparison.

The most closely related physical reasoning test environment to ours is PHYRE, which
also consists of tasks to measure two levels of generalization of agents. PHYRE tests
if agents can generalize to solve tasks within a task template (within-template) and
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if agents can generalize between di�erent task templates (cross-template). The cross-
template evaluation in PHYRE does not guarantee that the physical rules required to
solve the testing tasks exist in the training tasks. This leads to uncertainties in under-
standing agents' performance: inferior performance may not be an indicator of inferior
physical reasoning but of a di�cult training and testing split. Whereas the broad gener-
alization evaluation in ours always ensures that physical rules required in testing tasks
are covered in the training tasks, hence we guarantee a more systematic evaluation of the
physical reasoning capabilities of AI agents. According to the task design in PHYRE,
tasks need to be solved by trial and error. That is, even when the physical rule is known,
multiple attempts are still needed to solve the tasks. Therefore, PHYRE promotes de-
veloping agents with physical dexterity. In contrast, we focus on strategy-based physical
reasoning tasks that can be solved by a single attempt when the physical rule is under-
stood. We promote developing agents that can understand a physical rule rather than
taking a precise action in a physical environment (i.e., agents with strategic physical
reasoning capabilities). Furthermore, a limited number of object shapes, motion, and
material properties on scene dynamics hinders the ability of a comprehensive evaluation,
as performing well on these tests might not indicate greater physical reasoning ability in
more general and realistic contexts [Bear et al., 2021]. Therefore, compared to PHYRE,
in Phy-Q we have 1) 3 more object shapes (rectangles, squares, and triangles) to al-
low more diverse physical dynamics, 2) destructible objects to make our environment
more realistic, and 3) objects with three di�erent materials that have di�erent densities,
bounciness, and friction to allow physical reasoning in a more realistic context.

As a recent visual and physical prediction benchmark, Physion evaluates algorithms'
physical prediction capability using videos of eight di�erent physical scenarios. Com-
pared to Physion, the Phy-Q testbed has a more comprehensive set of 15 physical sce-
narios enabling the evaluation of agents in a wider range of physical scenarios. Phy-Q
testbed requires agents to interact with the environment and select the desired action to
accomplish physical tasks. Therefore, on top of predicting a physical event's outcome,
agents need to apply the acquired physical knowledge to solve new situations, which is
considered to be a more advanced type of task in Bloom's taxonomy [Krathwohl, 2002].
In addition, a study on forward prediction for physical reasoning [Girdhar et al., 2020]
con�rms that predicting the outcome in physical events does not necessarily increase per-
formance in domains that require selecting an action. Therefore, the research problem
focused in Physion is di�erent to the problem in the Phy-Q challenge.

Despite Angry Birds being a simpli�ed and controlled physics environment as compared
to the much messier real physical world, no AI system has been developed that comes
close to human performance. Since the start of this competition, many di�erent AI ap-
proaches have been proposed, ranging from modern deep reinforcement learning meth-
ods to more old-school heuristic methods, e.g. qualitative physical reasoning methods.
However, none of these approaches have reached the milestone of achieving human-level
performance. One major reason is that an agent's performance in the competition does
not enable an agent developer to identify the physical scenarios that the agent falls
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short of. This is because the tasks in the competition are generally complex with mul-
tiple physical scenarios within the same task. In this work, we show how the Phy-Q
testbed can be used to guide the competition agents through a systematic evaluation of
agents' performance.

4.3 Phy-Q Testbed

In this section, we introduce our testbed, discuss the physical scenarios we have identi�ed,
and explain the evaluation settings we have used in the testbed.

4.3.1 Introduction to the Phy-Q Testbed

Based on the 15 identi�ed physical scenarios (discussed in detail in Section 4.3.2), we
develop a physical reasoning testbed using Angry Birds. As discussed in Section 2.1.2,
we use a research clone of the game developed in Unity [Ferreira and Toledo, 2014b] to
develop the testbed. The game environment is a deterministic 2D world where objects
in motion follow Newtonian physics. The goal of the player is to destroy all the pigs
using the provided set of birds. The initial state of a game level is physically stable (i.e.,
none of the objects is in motion), and the goal is not achieved. The action of an agent
is to shoot the bird on the slingshot by providing the release coordinates relative to
the slingshot and the tap time of the bird to activate powers (if available). This means
the action space is essentially continuous. When playing, an agent takes a sequence
of actions, i.e., shoots the birds in a prede�ned order. The agent passes a game level
when it destroys all pigs with the provided set of birds and fails otherwise. We do not
provide the full world state that includes the exact location of objects in the simulator
or their physical properties, such as mass and friction, to the agents, as these properties
are not directly observable in the real world. Instead, an agent can request screenshots
and/or a symbolic representation of the game level at any time while playing. A game
screenshot is a 480 x 640 coloured image and the symbolic representation is in JSON
format containing all objects in the screenshot represented as a polygon of its vertices
(provided in order) and its respective colour map. The colour map provides the list of
8-bit quantized colours that appear in the game object with their respective percentages.

4.3.2 Physical Scenarios in Phy-Q Testbed

In this section, we explain the 15 physical scenarios we consider in our testbed. Firstly, we
consider the basic physical scenarios associated with applying forces directly on the target
objects, i.e., the e�ect of a single force and the e�ect of multiple forces [Sanborn et al.,
2013]. On top of the application of single force, we also include scenarios associated with
more complex motion, including rolling, falling, sliding, and bouncing, which are inspired
by the physical reasoning capabilities developed in human infancy [Bliss and Ogborn,
1994; Kaiser et al., 1985]. Furthermore, we de�ne the objects' relative weight [Wang
et al., 2018], the relative height [Baillargeon and DeVos, 1991; Hespos and Baillargeon,
2001], the relative width [Wang, 2004], the shape di�erences [Newcombe et al., 1999;
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Baillargeon et al., 2008], and the stability [Wilcox and Chapa, 2004] scenarios, which
require physical reasoning abilities infants acquire typically in a later stage. On the other
hand, we also incorporate clearing path, adequate timing, and manoeuvring [Kemp et al.,
2007], and taking non-greedy actions [Knox et al., 2012], which are required to overcome
challenges for robots to work safely and e�ciently in physical environments. To sum up,
the physical scenarios1 we consider and the corresponding high-level strategic physical
rules that can use to achieve the goal of the associated tasks are mentioned below. Each
of these scenarios tests a di�erent aspect of the agent's skill, physical understanding,
and planning ability.

1. Single force: Target objects have to be destroyed with a single force.

2. Multiple forces: Target objects need multiple forces to destroy.

3. Rolling: Circular objects have to be rolled along a surface to a target.

4. Falling: Objects have to fall onto a target.

5. Sliding: Non-circular objects have to be slid along a surface to a target.

6. Bouncing: Objects have to be bounced o� a surface to reach a target.

7. Relative weight: Objects with correct weight have to be moved to reach a target.

8. Relative height: Objects with the correct height have to be moved to reach a
target.

9. Relative width: Objects with the correct width or the opening with the correct
width have to be selected to reach a target.

10. Shape di�erence: Objects with the correct shape have to be moved/destroyed
to reach a target.

11. Non-greedy actions: Actions have to be selected in the correct order based on
physical consequences. The immediate action may be less e�ective in the short
term but advantageous in the long term. i.e., reach fewer targets in the short term
to reach more targets later.

12. Structural analysis: The correct target has to be chosen to break the stability
of a structure.

13. Clearing paths: A path have to be created before the target can be reached.

14. Adequate timing: Correct actions have to be performed within time constraints.

15. Manoeuvring: Objects have to be carefully guided to reach a target.

1Example tasks representing the 15 scenarios and the solutions for those tasks are available athttps:
//github.com/phy-q/benchmark
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(a) Single force (b) Multiple forces (c) Rolling

(d) Falling (e) Sliding (f) Bouncing

(g) Relative weight (h) Relative height (i) Relative width

(j) Shape di�erence (k) Non-greedy actions (l) Structural analysis

(m) Clearing paths (n) Adequate timing (o) Manoeuvring

Figure 4.1: 15 example tasks in Phy-Q representing the 15 physical scenarios. The sling-
shot with birds is situated on the left of the task. The goal of the agent is
to kill all the green-coloured pigs by shooting birds from the slingshot. The
dark-brown objects are static platforms. The objects with other colours are
dynamic and subject to the physics in the environments.

4.3.3 Task Templates and Task Generation

We design task templates in Angry Birds for each of the 15 physical scenarios mentioned
above. A task template can be solved by a speci�c strategic physical rule and all the
templates belonging to the same scenario can be solved by the high-level strategic phys-
ical rules discussed above. The task templates are handcrafted and we ensure that if an
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agent understands the strategic physical rule to solve the template, they can solve the
template without requiring highly accurate shooting, e.g., the template can be solved
by shooting at a speci�c object rather than shooting a speci�c coordinate. This de-
sign criterion is followed to reduce the dexterity requirement when solving the tasks in
our testbed. We have developed 2-8 task templates for each scenario, totalling 75 task
templates. Figure 4.1 shows example task templates for the 15 scenarios.

We generate 100 game levels from each template and we refer to these game levels as tasks
of the task template. All tasks of the same template share the same strategic physical rule
to solve. Similar to PHYRE, the tasks are generated by varying the location of the game
objects in the task template within a suitable range. Furthermore, various game objects
are added at random positions in the task as distractions, ensuring that they do not alter
the solution of the task. When generating the tasks each task template has constraints
to satisfy such that the physical rule of the template is preserved. For example, the
constraints can be which game objects should be directly reachable by a bird shot from
the slingshot, which game objects should be unreachable to the bird, which locations in
the game level space are feasible to place the game objects, etc. These constraints are
speci�c to each task template; they were determined by the template developers and
hardcoded in the task generator.

Although we provide 100 tasks for each task template, we also provide a task variation
generation module to generate more tasks if needed. Figure 4.2 shows task templates of
relative height scenario and example tasks generated from a single task template. All
the 75 task templates and example task variations can be found in Appendix B.2.

4.3.4 Proposed Evaluation Settings

The spectrum of generalization proposed by Chollet [Chollet, 2019] can be used to mea-
sure intelligence as laid out by theories of the structure of intelligence in cognitive psy-
chology. There are three di�erent levels in the spectrum: local generalization, broad
generalization, and extreme generalization. Having 15 physical scenarios, a variety of
task templates for each scenario, and task variations for each task template, our testbed
is capable of evaluating all three di�erent generalization levels. However, in this work,
we focus on measuring thelocal generalization and the broad generalizationof agents, as
local generalization is the form of generalization that has been studied from the 1950s up
to this day and there is an increasing research interest in achievingbroad generalization
[Chollet, 2019].

Formally, consider each scenarioscenarioi in the set of all scenariosSCENARIO , where
jSCENARIO j = 15, we de�ne template templatej 2 scenarioi , where jscenarioi j =
NT i and NT i is the number of templates we included forscenarioi . As we have 100
tasks for each template, we de�netaskk 2 templatej , where jtemplatej j = 100 for all
templates. i.e., each scenario is a set of tasks and the tasks in a scenario are partitioned
into templates.

To evaluate local generalization within a particular template, we train an agent on some
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Figure 4.2: The �rst and the second rows show the task templates of the relative height
scenario, and the third and fourth rows show the tasks generated using the
second task template in the �rst row.

(80% in practice) of the tasks in a template and evaluate it on the remaining tasks of the
same template. More formally, to evaluatelocal generalization, we train an agent on a
subset of the tasks from a templatej , T rainTasks j

local � templatej and test on the rest
of the tasks within the same template asTestTasksj

local = templatej nT rainTasks j
local .

We evaluate the local generalization for all of the 75 templates.

To evaluate broad generalization within a particular scenario, we train an agent on
the tasks of some of the templates of that scenario and evaluate it on the tasks of
the other templates of the same scenario (See Appendix B.4 for the division of task
templates for training and testing for each scenario). More formally, to evaluate the
broad generalization, we train an agent on the training tasks on a subset of templates,
T rainTasks i

broad = [ f j jtemplate j 2 scenario train
i gTrainTasks j

local , and evaluate on the test-

ing tasks of the rest of the templates within the same scenario,TestTasksi
broad =

[ f j jtemplate j 2 scenario test
i gTestTasksj

local , where scenariotrain
i is the set of training tem-
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Figure 4.3: The local generalization and the broad generalizationevaluation settings.

Figure 4.4: An illustration of how generalizing a physical rule is evaluated in thebroad
generalization evaluation using bouncing scenario as an example.

plates and scenariotest
i is the testing templates for scenarioi . We also make sure that

8i; scenario train
i \ scenariotest

i = ; . We evaluate the broad generalization performance
for all 15 scenarios.

In broad generalization, we assume that if an agent learns the required strategic physical
rule to solve a set of task templates, it should be able to apply the same strategic physical
rule to solve unseen tasks from other templates within the same scenario. As opposed
to this, the performance on local generalization evaluation may not represent an agent's
physical rule generalizing capability but memorizing a special-purpose heuristic. Figure
4.3 is a diagrammatic representation of the two evaluation settings, and Figure 4.4 shows
an illustration of how generalizing a physical rule is evaluated in thebroad generalization
evaluation setting.

Our physical reasoning quotient (Phy-Q) is inspired by deviation IQ [Wechsler, 1958]
for humans. We calculate Phy-Q of an agent using the results of ourbroad generaliza-
tion evaluation since we consider that this evaluation measures the agent's ability in
generalizing strategic physical rules. When calculating the Phy-Q we exclude the �rst
two scenarios: single force and multiple forces, as the solution for the two scenarios is
directly shooting the bird to the exact location of the pig. Given that we have provided
a trajectory planner for both humans and agents, solving the tasks of the two scenarios
is straightforward. This is also evident from the exceptionally high results (in Section
4.5.2) of the Pig Shooter agent that directly shoots at the pigs without doing any physical
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